Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopg Structured version   Unicode version

Theorem dfopg 3974
 Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg

Proof of Theorem dfopg
StepHypRef Expression
1 elex 2956 . 2
2 elex 2956 . 2
3 dfopif 3973 . . 3
4 iftrue 3737 . . 3
53, 4syl5eq 2479 . 2
61, 2, 5syl2an 464 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cvv 2948  c0 3620  cif 3731  csn 3806  cpr 3807  cop 3809 This theorem is referenced by:  dfop  3975  opnz  4424  opth1  4426  opth  4427  0nelop  4438  opwf  7730  rankopb  7770  wunop  8589  tskop  8638  gruop  8672 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-dif 3315  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-op 3815
 Copyright terms: Public domain W3C validator