MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopg Unicode version

Theorem dfopg 3924
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )

Proof of Theorem dfopg
StepHypRef Expression
1 elex 2907 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2907 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 dfopif 3923 . . 3  |-  <. A ,  B >.  =  if ( ( A  e.  _V  /\  B  e.  _V ) ,  { { A } ,  { A ,  B } } ,  (/) )
4 iftrue 3688 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ( A  e.  _V  /\  B  e.  _V ) ,  { { A } ,  { A ,  B } } ,  (/) )  =  { { A } ,  { A ,  B } } )
53, 4syl5eq 2431 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
61, 2, 5syl2an 464 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   (/)c0 3571   ifcif 3682   {csn 3757   {cpr 3758   <.cop 3760
This theorem is referenced by:  dfop  3925  opnz  4373  opth1  4375  opth  4376  0nelop  4387  opwf  7671  rankopb  7711  wunop  8530  tskop  8579  gruop  8613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-dif 3266  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-op 3766
  Copyright terms: Public domain W3C validator