MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3 Unicode version

Theorem dfoprab3 6192
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab3  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Distinct variable groups:    x, y, ph    ps, w    x, z, w, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 6191 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }
2 fvex 5555 . . . . 5  |-  ( 1st `  w )  e.  _V
3 fvex 5555 . . . . 5  |-  ( 2nd `  w )  e.  _V
4 eqcom 2298 . . . . . . . . . 10  |-  ( x  =  ( 1st `  w
)  <->  ( 1st `  w
)  =  x )
5 eqcom 2298 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  w
)  <->  ( 2nd `  w
)  =  y )
64, 5anbi12i 678 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  <->  ( ( 1st `  w )  =  x  /\  ( 2nd `  w )  =  y ) )
7 eqopi 6172 . . . . . . . . 9  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
( 1st `  w
)  =  x  /\  ( 2nd `  w )  =  y ) )  ->  w  =  <. x ,  y >. )
86, 7sylan2b 461 . . . . . . . 8  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  ->  w  =  <. x ,  y >. )
9 dfoprab3.1 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
108, 9syl 15 . . . . . . 7  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ph  <->  ps ) )
1110bicomd 192 . . . . . 6  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ps  <->  ph ) )
1211ex 423 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  ->  ( ps 
<-> 
ph ) ) )
132, 3, 12sbc2iedv 3072 . . . 4  |-  ( w  e.  ( _V  X.  _V )  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  / 
y ]. ps  <->  ph ) )
1413pm5.32i 618 . . 3  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps )  <->  ( w  e.  ( _V  X.  _V )  /\  ph ) )
1514opabbii 4099 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }  =  { <. w ,  z
>.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }
161, 15eqtr2i 2317 1  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   [.wsbc 3004   <.cop 3656   {copab 4092    X. cxp 4703   ` cfv 5271   {coprab 5875   1stc1st 6136   2ndc2nd 6137
This theorem is referenced by:  dfoprab4  6193  df1st2  6221  df2nd2  6222
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279  df-oprab 5878  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator