Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3lem1 Structured version   Unicode version

Theorem dford3lem1 27097
Description: Lemma for dford3 27099. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3lem1  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y ) )
Distinct variable group:    y, b, N

Proof of Theorem dford3lem1
StepHypRef Expression
1 treq 4308 . . . . 5  |-  ( y  =  b  ->  ( Tr  y  <->  Tr  b )
)
21cbvralv 2932 . . . 4  |-  ( A. y  e.  N  Tr  y 
<-> 
A. b  e.  N  Tr  b )
32biimpi 187 . . 3  |-  ( A. y  e.  N  Tr  y  ->  A. b  e.  N  Tr  b )
43adantl 453 . 2  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  Tr  b
)
5 trss 4311 . . . . . 6  |-  ( Tr  N  ->  ( b  e.  N  ->  b  C_  N ) )
6 ssralv 3407 . . . . . 6  |-  ( b 
C_  N  ->  ( A. y  e.  N  Tr  y  ->  A. y  e.  b  Tr  y
) )
75, 6syl6 31 . . . . 5  |-  ( Tr  N  ->  ( b  e.  N  ->  ( A. y  e.  N  Tr  y  ->  A. y  e.  b  Tr  y ) ) )
87com23 74 . . . 4  |-  ( Tr  N  ->  ( A. y  e.  N  Tr  y  ->  ( b  e.  N  ->  A. y  e.  b  Tr  y
) ) )
98imp 419 . . 3  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  (
b  e.  N  ->  A. y  e.  b  Tr  y ) )
109ralrimiv 2788 . 2  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  A. y  e.  b  Tr  y
)
11 r19.26 2838 . 2  |-  ( A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y
)  <->  ( A. b  e.  N  Tr  b  /\  A. b  e.  N  A. y  e.  b  Tr  y ) )
124, 10, 11sylanbrc 646 1  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   A.wral 2705    C_ wss 3320   Tr wtr 4302
This theorem is referenced by:  dford3lem2  27098  dford3  27099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-in 3327  df-ss 3334  df-uni 4016  df-tr 4303
  Copyright terms: Public domain W3C validator