Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford5reg Unicode version

Theorem dford5reg 24138
Description: Given ax-reg 7306, an ordinal is a transitive class totally ordered by epsilon. (Contributed by Scott Fenton, 28-Jan-2011.)
Assertion
Ref Expression
dford5reg  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  Or  A ) )

Proof of Theorem dford5reg
StepHypRef Expression
1 df-ord 4395 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  We  A ) )
2 zfregfr 7316 . . . 4  |-  _E  Fr  A
3 df-we 4354 . . . 4  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  _E  Or  A ) )
42, 3mpbiran 884 . . 3  |-  (  _E  We  A  <->  _E  Or  A )
54anbi2i 675 . 2  |-  ( ( Tr  A  /\  _E  We  A )  <->  ( Tr  A  /\  _E  Or  A
) )
61, 5bitri 240 1  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  Or  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   Tr wtr 4113    _E cep 4303    Or wor 4313    Fr wfr 4349    We wwe 4351   Ord word 4391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-eprel 4305  df-fr 4352  df-we 4354  df-ord 4395
  Copyright terms: Public domain W3C validator