Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpred2 Unicode version

Theorem dfpred2 24246
Description: An alternate definition of predecessor class when  X is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
dfpred2.1  |-  X  e. 
_V
Assertion
Ref Expression
dfpred2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  { y  |  y R X } )
Distinct variable groups:    y, R    y, X
Allowed substitution hint:    A( y)

Proof of Theorem dfpred2
StepHypRef Expression
1 df-pred 24239 . 2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
2 dfpred2.1 . . . 4  |-  X  e. 
_V
3 iniseg 5060 . . . 4  |-  ( X  e.  _V  ->  ( `' R " { X } )  =  {
y  |  y R X } )
42, 3ax-mp 8 . . 3  |-  ( `' R " { X } )  =  {
y  |  y R X }
54ineq2i 3380 . 2  |-  ( A  i^i  ( `' R " { X } ) )  =  ( A  i^i  { y  |  y R X }
)
61, 5eqtri 2316 1  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  { y  |  y R X } )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   {cab 2282   _Vcvv 2801    i^i cin 3164   {csn 3653   class class class wbr 4039   `'ccnv 4704   "cima 4708   Predcpred 24238
This theorem is referenced by:  tz6.26  24276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-pred 24239
  Copyright terms: Public domain W3C validator