Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpred2 Structured version   Unicode version

Theorem dfpred2 25440
Description: An alternate definition of predecessor class when  X is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
dfpred2.1  |-  X  e. 
_V
Assertion
Ref Expression
dfpred2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  { y  |  y R X } )
Distinct variable groups:    y, R    y, X
Allowed substitution hint:    A( y)

Proof of Theorem dfpred2
StepHypRef Expression
1 df-pred 25431 . 2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
2 dfpred2.1 . . . 4  |-  X  e. 
_V
3 iniseg 5227 . . . 4  |-  ( X  e.  _V  ->  ( `' R " { X } )  =  {
y  |  y R X } )
42, 3ax-mp 8 . . 3  |-  ( `' R " { X } )  =  {
y  |  y R X }
54ineq2i 3531 . 2  |-  ( A  i^i  ( `' R " { X } ) )  =  ( A  i^i  { y  |  y R X }
)
61, 5eqtri 2455 1  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  { y  |  y R X } )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   {cab 2421   _Vcvv 2948    i^i cin 3311   {csn 3806   class class class wbr 4204   `'ccnv 4869   "cima 4873   Predcpred 25430
This theorem is referenced by:  dfpred3  25441  tz6.26  25472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-pred 25431
  Copyright terms: Public domain W3C validator