Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab2 Structured version   Unicode version

Theorem dfrab2 3608
 Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2706 . 2
2 inab 3601 . . 3
3 abid2 2552 . . . 4
43ineq1i 3530 . . 3
52, 4eqtr3i 2457 . 2
6 incom 3525 . 2
71, 5, 63eqtri 2459 1
 Colors of variables: wff set class Syntax hints:   wa 359   wceq 1652   wcel 1725  cab 2421  crab 2701   cin 3311 This theorem is referenced by:  dfsup2OLD  7440  psrbagsn  16547  ismbl  19414  orvcval4  24710  dfpred3  25441  fvline2  26072 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-in 3319
 Copyright terms: Public domain W3C validator