Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg2 Unicode version

Theorem dfrdg2 24710
Description: Alternate definition of the recursive function generator when  I is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg2  |-  ( I  e.  V  ->  rec ( F ,  I )  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) } )
Distinct variable groups:    f, F, x, y    f, I, x, y
Allowed substitution hints:    V( x, y, f)

Proof of Theorem dfrdg2
Dummy variables  g 
i  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6512 . . 3  |-  ( i  =  I  ->  rec ( F ,  i )  =  rec ( F ,  I ) )
2 ifeq1 3645 . . . . . . . . 9  |-  ( i  =  I  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) )
32eqeq2d 2369 . . . . . . . 8  |-  ( i  =  I  ->  (
( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) )  <->  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) )
43ralbidv 2639 . . . . . . 7  |-  ( i  =  I  ->  ( A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) )  <->  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) ) )
54anbi2d 684 . . . . . 6  |-  ( i  =  I  ->  (
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )  <->  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) ) )
65rexbidv 2640 . . . . 5  |-  ( i  =  I  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )  <->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) ) )
76abbidv 2472 . . . 4  |-  ( i  =  I  ->  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) }  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) ) } )
87unieqd 3919 . . 3  |-  ( i  =  I  ->  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) }  =  U. { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) ) } )
91, 8eqeq12d 2372 . 2  |-  ( i  =  I  ->  ( rec ( F ,  i )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) }  <->  rec ( F ,  I )  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) ) } ) )
10 df-rdg 6510 . . 3  |-  rec ( F ,  i )  = recs ( ( g  e. 
_V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) )
11 df-recs 6475 . . 3  |- recs ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) )  =  U. { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim 
dom  g ,  U. ran  g ,  ( F `
 ( g `  U. dom  g ) ) ) ) ) `  ( f  |`  y
) ) ) }
12 vex 2867 . . . . . . . . . . . . 13  |-  f  e. 
_V
1312resex 5077 . . . . . . . . . . . 12  |-  ( f  |`  y )  e.  _V
14 eqeq1 2364 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  |`  y )  ->  (
g  =  (/)  <->  ( f  |`  y )  =  (/) ) )
15 relres 5065 . . . . . . . . . . . . . . . 16  |-  Rel  (
f  |`  y )
16 reldm0 4978 . . . . . . . . . . . . . . . 16  |-  ( Rel  ( f  |`  y
)  ->  ( (
f  |`  y )  =  (/) 
<->  dom  ( f  |`  y )  =  (/) ) )
1715, 16ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( f  |`  y )  =  (/)  <->  dom  ( f  |`  y )  =  (/) )
1814, 17syl6bb 252 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  |`  y )  ->  (
g  =  (/)  <->  dom  ( f  |`  y )  =  (/) ) )
19 dmeq 4961 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  |`  y )  ->  dom  g  =  dom  ( f  |`  y ) )
20 limeq 4486 . . . . . . . . . . . . . . . 16  |-  ( dom  g  =  dom  (
f  |`  y )  -> 
( Lim  dom  g  <->  Lim  dom  (
f  |`  y ) ) )
2119, 20syl 15 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  |`  y )  ->  ( Lim  dom  g  <->  Lim  dom  (
f  |`  y ) ) )
22 rneq 4986 . . . . . . . . . . . . . . . . 17  |-  ( g  =  ( f  |`  y )  ->  ran  g  =  ran  ( f  |`  y ) )
23 df-ima 4784 . . . . . . . . . . . . . . . . 17  |-  ( f
" y )  =  ran  ( f  |`  y )
2422, 23syl6eqr 2408 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  |`  y )  ->  ran  g  =  ( f " y ) )
2524unieqd 3919 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  |`  y )  ->  U. ran  g  =  U. (
f " y ) )
26 id 19 . . . . . . . . . . . . . . . . 17  |-  ( g  =  ( f  |`  y )  ->  g  =  ( f  |`  y ) )
2719unieqd 3919 . . . . . . . . . . . . . . . . 17  |-  ( g  =  ( f  |`  y )  ->  U. dom  g  =  U. dom  (
f  |`  y ) )
2826, 27fveq12d 5614 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  |`  y )  ->  (
g `  U. dom  g
)  =  ( ( f  |`  y ) `  U. dom  ( f  |`  y ) ) )
2928fveq2d 5612 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  |`  y )  ->  ( F `  ( g `  U. dom  g ) )  =  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) )
3021, 25, 29ifbieq12d 3663 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  |`  y )  ->  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) )  =  if ( Lim  dom  ( f  |`  y
) ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )
3118, 30ifbieq2d 3661 . . . . . . . . . . . . 13  |-  ( g  =  ( f  |`  y )  ->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  =  if ( dom  ( f  |`  y
)  =  (/) ,  i ,  if ( Lim 
dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) ) )
32 eqid 2358 . . . . . . . . . . . . 13  |-  ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim 
dom  g ,  U. ran  g ,  ( F `
 ( g `  U. dom  g ) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )
33 vex 2867 . . . . . . . . . . . . . 14  |-  i  e. 
_V
34 imaexg 5108 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  _V  ->  (
f " y )  e.  _V )
3512, 34ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( f
" y )  e. 
_V
3635uniex 4598 . . . . . . . . . . . . . . 15  |-  U. (
f " y )  e.  _V
37 fvex 5622 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) )  e. 
_V
3836, 37ifex 3699 . . . . . . . . . . . . . 14  |-  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) )  e.  _V
3933, 38ifex 3699 . . . . . . . . . . . . 13  |-  if ( dom  ( f  |`  y )  =  (/) ,  i ,  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )  e.  _V
4031, 32, 39fvmpt 5685 . . . . . . . . . . . 12  |-  ( ( f  |`  y )  e.  _V  ->  ( (
g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) )  =  if ( dom  (
f  |`  y )  =  (/) ,  i ,  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) ) )
4113, 40ax-mp 8 . . . . . . . . . . 11  |-  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) )  =  if ( dom  (
f  |`  y )  =  (/) ,  i ,  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )
42 dmres 5058 . . . . . . . . . . . . 13  |-  dom  (
f  |`  y )  =  ( y  i^i  dom  f )
43 onelss 4516 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
4443imp 418 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  C_  x )
45443adant2 974 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  y  C_  x )
46 fndm 5425 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  x  ->  dom  f  =  x )
47463ad2ant2 977 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  dom  f  =  x )
4845, 47sseqtr4d 3291 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  y  C_  dom  f )
49 df-ss 3242 . . . . . . . . . . . . . 14  |-  ( y 
C_  dom  f  <->  ( y  i^i  dom  f )  =  y )
5048, 49sylib 188 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  ( y  i^i  dom  f )  =  y )
5142, 50syl5eq 2402 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  dom  ( f  |`  y )  =  y )
52 eqeq1 2364 . . . . . . . . . . . . . 14  |-  ( dom  ( f  |`  y
)  =  y  -> 
( dom  ( f  |`  y )  =  (/)  <->  y  =  (/) ) )
53 limeq 4486 . . . . . . . . . . . . . . 15  |-  ( dom  ( f  |`  y
)  =  y  -> 
( Lim  dom  ( f  |`  y )  <->  Lim  y ) )
54 unieq 3917 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( f  |`  y
)  =  y  ->  U. dom  ( f  |`  y )  =  U. y )
5554fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( dom  ( f  |`  y
)  =  y  -> 
( ( f  |`  y ) `  U. dom  ( f  |`  y
) )  =  ( ( f  |`  y
) `  U. y ) )
5655fveq2d 5612 . . . . . . . . . . . . . . 15  |-  ( dom  ( f  |`  y
)  =  y  -> 
( F `  (
( f  |`  y
) `  U. dom  (
f  |`  y ) ) )  =  ( F `
 ( ( f  |`  y ) `  U. y ) ) )
5753, 56ifbieq2d 3661 . . . . . . . . . . . . . 14  |-  ( dom  ( f  |`  y
)  =  y  ->  if ( Lim  dom  (
f  |`  y ) , 
U. ( f "
y ) ,  ( F `  ( ( f  |`  y ) `  U. dom  ( f  |`  y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )
5852, 57ifbieq2d 3661 . . . . . . . . . . . . 13  |-  ( dom  ( f  |`  y
)  =  y  ->  if ( dom  ( f  |`  y )  =  (/) ,  i ,  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) ) )
59 onelon 4499 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
60 eloni 4484 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  Ord  y )
6159, 60syl 15 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
62613adant2 974 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  Ord  y )
63 ordzsl 4718 . . . . . . . . . . . . . . 15  |-  ( Ord  y  <->  ( y  =  (/)  \/  E. z  e.  On  y  =  suc  z  \/  Lim  y ) )
64 iftrue 3647 . . . . . . . . . . . . . . . . 17  |-  ( y  =  (/)  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  i )
65 iftrue 3647 . . . . . . . . . . . . . . . . 17  |-  ( y  =  (/)  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) )  =  i )
6664, 65eqtr4d 2393 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
67 vex 2867 . . . . . . . . . . . . . . . . . . . . . . 23  |-  z  e. 
_V
6867sucid 4553 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
suc  z
69 fvres 5625 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  suc  z  -> 
( ( f  |`  suc  z ) `  z
)  =  ( f `
 z ) )
7068, 69ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  |`  suc  z ) `
 z )  =  ( f `  z
)
71 eloni 4484 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  On  ->  Ord  z )
72 ordunisuc 4705 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Ord  z  ->  U. suc  z  =  z )
7371, 72syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  On  ->  U. suc  z  =  z )
7473fveq2d 5612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  On  ->  (
( f  |`  suc  z
) `  U. suc  z
)  =  ( ( f  |`  suc  z ) `
 z ) )
7573fveq2d 5612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  On  ->  (
f `  U. suc  z
)  =  ( f `
 z ) )
7670, 74, 753eqtr4a 2416 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  On  ->  (
( f  |`  suc  z
) `  U. suc  z
)  =  ( f `
 U. suc  z
) )
7776fveq2d 5612 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  On  ->  ( F `  ( (
f  |`  suc  z ) `
 U. suc  z
) )  =  ( F `  ( f `
 U. suc  z
) ) )
78 nsuceq0 4554 . . . . . . . . . . . . . . . . . . . . . 22  |-  suc  z  =/=  (/)
79 df-ne 2523 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( suc  z  =/=  (/)  <->  -.  suc  z  =  (/) )
8078, 79mpbi 199 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  suc  z  =  (/)
81 iffalse 3648 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -. 
suc  z  =  (/)  ->  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. (
f " y ) ,  ( F `  ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )  =  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )
8280, 81ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )  =  if ( Lim  suc  z ,  U. ( f "
y ) ,  ( F `  ( ( f  |`  suc  z ) `
 U. suc  z
) ) )
83 nlimsucg 4715 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  _V  ->  -.  Lim  suc  z )
84 iffalse 3648 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -. 
Lim  suc  z  ->  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) )  =  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) )
8567, 83, 84mp2b 9 . . . . . . . . . . . . . . . . . . . 20  |-  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) )  =  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) )
8682, 85eqtri 2378 . . . . . . . . . . . . . . . . . . 19  |-  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )  =  ( F `  ( ( f  |`  suc  z ) `
 U. suc  z
) )
87 iffalse 3648 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -. 
suc  z  =  (/)  ->  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. (
f " y ) ,  ( F `  ( f `  U. suc  z ) ) ) )  =  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) )
8880, 87ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) )  =  if ( Lim  suc  z ,  U. ( f "
y ) ,  ( F `  ( f `
 U. suc  z
) ) )
89 iffalse 3648 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -. 
Lim  suc  z  ->  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) )  =  ( F `
 ( f `  U. suc  z ) ) )
9067, 83, 89mp2b 9 . . . . . . . . . . . . . . . . . . . 20  |-  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) )  =  ( F `
 ( f `  U. suc  z ) )
9188, 90eqtri 2378 . . . . . . . . . . . . . . . . . . 19  |-  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) )  =  ( F `  ( f `
 U. suc  z
) )
9277, 86, 913eqtr4g 2415 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  On  ->  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )  =  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) ) )
93 eqeq1 2364 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
94 limeq 4486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  suc  z  -> 
( Lim  y  <->  Lim  suc  z
) )
95 reseq2 5032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  suc  z  -> 
( f  |`  y
)  =  ( f  |`  suc  z ) )
96 unieq 3917 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  suc  z  ->  U. y  =  U. suc  z )
9795, 96fveq12d 5614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  suc  z  -> 
( ( f  |`  y ) `  U. y )  =  ( ( f  |`  suc  z
) `  U. suc  z
) )
9897fveq2d 5612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  suc  z  -> 
( F `  (
( f  |`  y
) `  U. y ) )  =  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) )
9994, 98ifbieq2d 3661 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  suc  z  ->  if ( Lim  y , 
U. ( f "
y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) )  =  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )
10093, 99ifbieq2d 3661 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  suc  z  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  suc  z ) `  U. suc  z ) ) ) ) )
10196fveq2d 5612 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  suc  z  -> 
( f `  U. y )  =  ( f `  U. suc  z ) )
102101fveq2d 5612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  suc  z  -> 
( F `  (
f `  U. y ) )  =  ( F `
 ( f `  U. suc  z ) ) )
10394, 102ifbieq2d 3661 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  suc  z  ->  if ( Lim  y , 
U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) )  =  if ( Lim  suc  z ,  U. ( f "
y ) ,  ( F `  ( f `
 U. suc  z
) ) ) )
10493, 103ifbieq2d 3661 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  suc  z  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )  =  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) ) )
105100, 104eqeq12d 2372 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  z  -> 
( if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )  <->  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. (
f " y ) ,  ( F `  ( ( f  |`  suc  z ) `  U. suc  z ) ) ) )  =  if ( suc  z  =  (/) ,  i ,  if ( Lim  suc  z ,  U. ( f " y
) ,  ( F `
 ( f `  U. suc  z ) ) ) ) ) )
10692, 105syl5ibrcom 213 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  On  ->  (
y  =  suc  z  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) ) )
107106rexlimiv 2737 . . . . . . . . . . . . . . . 16  |-  ( E. z  e.  On  y  =  suc  z  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
108 iftrue 3647 . . . . . . . . . . . . . . . . . 18  |-  ( Lim  y  ->  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) )  =  U. ( f
" y ) )
109 df-lim 4479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Lim  y  <->  ( Ord  y  /\  y  =/=  (/)  /\  y  =  U. y ) )
110109simp2bi 971 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  y  ->  y  =/=  (/) )
111110neneqd 2537 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  y  ->  -.  y  =  (/) )
112 iffalse 3648 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  y  =  (/)  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )
113111, 112syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( Lim  y  ->  if (
y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )
114 iftrue 3647 . . . . . . . . . . . . . . . . . 18  |-  ( Lim  y  ->  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) )  =  U. ( f
" y ) )
115108, 113, 1143eqtr4d 2400 . . . . . . . . . . . . . . . . 17  |-  ( Lim  y  ->  if (
y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )
116 iffalse 3648 . . . . . . . . . . . . . . . . . 18  |-  ( -.  y  =  (/)  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )
117111, 116syl 15 . . . . . . . . . . . . . . . . 17  |-  ( Lim  y  ->  if (
y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) )  =  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) )
118115, 117eqtr4d 2393 . . . . . . . . . . . . . . . 16  |-  ( Lim  y  ->  if (
y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
11966, 107, 1183jaoi 1245 . . . . . . . . . . . . . . 15  |-  ( ( y  =  (/)  \/  E. z  e.  On  y  =  suc  z  \/  Lim  y )  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
12063, 119sylbi 187 . . . . . . . . . . . . . 14  |-  ( Ord  y  ->  if (
y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
12162, 120syl 15 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. y ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
12258, 121sylan9eqr 2412 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  /\  dom  ( f  |`  y )  =  y )  ->  if ( dom  ( f  |`  y
)  =  (/) ,  i ,  if ( Lim 
dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
12351, 122mpdan 649 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  if ( dom  (
f  |`  y )  =  (/) ,  i ,  if ( Lim  dom  ( f  |`  y ) ,  U. ( f " y
) ,  ( F `
 ( ( f  |`  y ) `  U. dom  ( f  |`  y
) ) ) ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) )
12441, 123syl5eq 2402 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (
f  |`  y ) )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f "
y ) ,  ( F `  ( f `
 U. y ) ) ) ) )
125124eqeq2d 2369 . . . . . . . . 9  |-  ( ( x  e.  On  /\  f  Fn  x  /\  y  e.  x )  ->  ( ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) )  <->  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) )
1261253expa 1151 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  f  Fn  x )  /\  y  e.  x
)  ->  ( (
f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim 
dom  g ,  U. ran  g ,  ( F `
 ( g `  U. dom  g ) ) ) ) ) `  ( f  |`  y
) )  <->  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) )
127126ralbidva 2635 . . . . . . 7  |-  ( ( x  e.  On  /\  f  Fn  x )  ->  ( A. y  e.  x  ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) )  <->  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) )
128127pm5.32da 622 . . . . . 6  |-  ( x  e.  On  ->  (
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) ) )  <-> 
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) ) ) )
129128rexbiia 2652 . . . . 5  |-  ( E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim 
dom  g ,  U. ran  g ,  ( F `
 ( g `  U. dom  g ) ) ) ) ) `  ( f  |`  y
) ) )  <->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) )
130129abbii 2470 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) }
131130unieqi 3918 . . 3  |-  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  i ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( f  |`  y ) ) ) }  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) }
13210, 11, 1313eqtri 2382 . 2  |-  rec ( F ,  i )  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  if ( y  =  (/) ,  i ,  if ( Lim  y ,  U. (
f " y ) ,  ( F `  ( f `  U. y ) ) ) ) ) }
1339, 132vtoclg 2919 1  |-  ( I  e.  V  ->  rec ( F ,  I )  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  if ( y  =  (/) ,  I ,  if ( Lim  y ,  U. ( f " y
) ,  ( F `
 ( f `  U. y ) ) ) ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1642    e. wcel 1710   {cab 2344    =/= wne 2521   A.wral 2619   E.wrex 2620   _Vcvv 2864    i^i cin 3227    C_ wss 3228   (/)c0 3531   ifcif 3641   U.cuni 3908    e. cmpt 4158   Ord word 4473   Oncon0 4474   Lim wlim 4475   suc csuc 4476   dom cdm 4771   ran crn 4772    |` cres 4773   "cima 4774   Rel wrel 4776    Fn wfn 5332   ` cfv 5337  recscrecs 6474   reccrdg 6509
This theorem is referenced by:  dfrdg3  24711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-fv 5345  df-recs 6475  df-rdg 6510
  Copyright terms: Public domain W3C validator