MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel3 Structured version   Unicode version

Theorem dfrel3 5320
Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrel3  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)

Proof of Theorem dfrel3
StepHypRef Expression
1 dfrel2 5313 . 2  |-  ( Rel 
R  <->  `' `' R  =  R
)
2 cnvcnv2 5316 . . 3  |-  `' `' R  =  ( R  |` 
_V )
32eqeq1i 2442 . 2  |-  ( `' `' R  =  R  <->  ( R  |`  _V )  =  R )
41, 3bitri 241 1  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1652   _Vcvv 2948   `'ccnv 4869    |` cres 4872   Rel wrel 4875
This theorem is referenced by:  cocnvcnv2  5373  f1ovi  5706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-res 4882
  Copyright terms: Public domain W3C validator