MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfres2 Structured version   Unicode version

Theorem dfres2 5185
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2  |-  ( R  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem dfres2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5166 . 2  |-  Rel  ( R  |`  A )
2 relopab 4993 . 2  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
3 vex 2951 . . . . 5  |-  w  e. 
_V
43brres 5144 . . . 4  |-  ( z ( R  |`  A ) w  <->  ( z R w  /\  z  e.  A ) )
5 df-br 4205 . . . 4  |-  ( z ( R  |`  A ) w  <->  <. z ,  w >.  e.  ( R  |`  A ) )
6 ancom 438 . . . 4  |-  ( ( z R w  /\  z  e.  A )  <->  ( z  e.  A  /\  z R w ) )
74, 5, 63bitr3i 267 . . 3  |-  ( <.
z ,  w >.  e.  ( R  |`  A )  <-> 
( z  e.  A  /\  z R w ) )
8 vex 2951 . . . 4  |-  z  e. 
_V
9 eleq1 2495 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
10 breq1 4207 . . . . 5  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
119, 10anbi12d 692 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  x R y )  <-> 
( z  e.  A  /\  z R y ) ) )
12 breq2 4208 . . . . 5  |-  ( y  =  w  ->  (
z R y  <->  z R w ) )
1312anbi2d 685 . . . 4  |-  ( y  =  w  ->  (
( z  e.  A  /\  z R y )  <-> 
( z  e.  A  /\  z R w ) ) )
148, 3, 11, 13opelopab 4468 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) }  <-> 
( z  e.  A  /\  z R w ) )
157, 14bitr4i 244 . 2  |-  ( <.
z ,  w >.  e.  ( R  |`  A )  <->  <. z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) } )
161, 2, 15eqrelriiv 4962 1  |-  ( R  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204   {copab 4257    |` cres 4872
This theorem is referenced by:  shftidt2  11888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-res 4882
  Copyright terms: Public domain W3C validator