Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn3 Unicode version

Theorem dfrn3 4869
 Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3
Distinct variable group:   ,,

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 4868 . 2
2 df-br 4024 . . . 4
32exbii 1569 . . 3
43abbii 2395 . 2
51, 4eqtri 2303 1
 Colors of variables: wff set class Syntax hints:  wex 1528   wceq 1623   wcel 1684  cab 2269  cop 3643   class class class wbr 4023   crn 4690 This theorem is referenced by:  elrn2g  4870  elrn2  4918  csbrng  4923  imadmrn  5024  imassrn  5025  prjrn  25083  csbrngVD  28672 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-cnv 4697  df-dm 4699  df-rn 4700
 Copyright terms: Public domain W3C validator