MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsmo2 Unicode version

Theorem dfsmo2 6380
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
Distinct variable group:    x, F, y

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 6379 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )
2 ralcom 2713 . . . . . 6  |-  ( A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )
3 impexp 433 . . . . . . . . 9  |-  ( ( ( y  e.  dom  F  /\  y  e.  x
)  ->  ( F `  y )  e.  ( F `  x ) )  <->  ( y  e. 
dom  F  ->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )
4 simpr 447 . . . . . . . . . . 11  |-  ( ( y  e.  dom  F  /\  y  e.  x
)  ->  y  e.  x )
5 ordtr1 4451 . . . . . . . . . . . . . . 15  |-  ( Ord 
dom  F  ->  ( ( y  e.  x  /\  x  e.  dom  F )  ->  y  e.  dom  F ) )
653impib 1149 . . . . . . . . . . . . . 14  |-  ( ( Ord  dom  F  /\  y  e.  x  /\  x  e.  dom  F )  ->  y  e.  dom  F )
763com23 1157 . . . . . . . . . . . . 13  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  y  e.  dom  F
)
8 simp3 957 . . . . . . . . . . . . 13  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  y  e.  x )
97, 8jca 518 . . . . . . . . . . . 12  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  ( y  e.  dom  F  /\  y  e.  x
) )
1093expia 1153 . . . . . . . . . . 11  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( y  e.  x  ->  ( y  e.  dom  F  /\  y  e.  x ) ) )
114, 10impbid2 195 . . . . . . . . . 10  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( y  e.  dom  F  /\  y  e.  x )  <->  y  e.  x ) )
1211imbi1d 308 . . . . . . . . 9  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( ( y  e.  dom  F  /\  y  e.  x
)  ->  ( F `  y )  e.  ( F `  x ) )  <->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x ) ) ) )
133, 12syl5bbr 250 . . . . . . . 8  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( y  e.  dom  F  -> 
( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x ) ) ) )
1413ralbidv2 2578 . . . . . . 7  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( A. y  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) )  <->  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1514ralbidva 2572 . . . . . 6  |-  ( Ord 
dom  F  ->  ( A. x  e.  dom  F A. y  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
162, 15syl5bb 248 . . . . 5  |-  ( Ord 
dom  F  ->  ( A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1716pm5.32i 618 . . . 4  |-  ( ( Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( Ord  dom  F  /\  A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1817anbi2i 675 . . 3  |-  ( ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. y  e. 
dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )  <-> 
( F : dom  F --> On  /\  ( Ord 
dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) ) )
19 3anass 938 . . 3  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) ) ) ) )
20 3anass 938 . . 3  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) )  <->  ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) ) )
2118, 19, 203bitr4i 268 . 2  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
221, 21bitri 240 1  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   A.wral 2556   Ord word 4407   Oncon0 4408   dom cdm 4705   -->wf 5267   ` cfv 5271   Smo wsmo 6378
This theorem is referenced by:  issmo2  6382  smores2  6387  smofvon2  6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-in 3172  df-ss 3179  df-uni 3844  df-tr 4130  df-ord 4411  df-smo 6379
  Copyright terms: Public domain W3C validator