Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso3 Unicode version

Theorem dfso3 25130
Description: Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.)
Assertion
Ref Expression
dfso3  |-  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z )  /\  (
x R y  \/  x  =  y  \/  y R x ) ) )
Distinct variable groups:    x, R, y, z    x, A, y, z

Proof of Theorem dfso3
StepHypRef Expression
1 ne0i 3594 . . . . 5  |-  ( y  e.  A  ->  A  =/=  (/) )
2 r19.27zv 3687 . . . . 5  |-  ( A  =/=  (/)  ->  ( A. z  e.  A  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) ) )
31, 2syl 16 . . . 4  |-  ( y  e.  A  ->  ( A. z  e.  A  ( ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) ) )
43ralbiia 2698 . . 3  |-  ( A. y  e.  A  A. z  e.  A  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. y  e.  A  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
54ralbii 2690 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. x  e.  A  A. y  e.  A  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
6 df-3an 938 . . . 4  |-  ( ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
76ralbii 2690 . . 3  |-  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. z  e.  A  ( ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
872ralbii 2692 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
9 df-po 4463 . . . 4  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109anbi1i 677 . . 3  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )  <->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) ) )
11 df-so 4464 . . 3  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
12 r19.26-2 2799 . . 3  |-  ( A. x  e.  A  A. y  e.  A  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
1310, 11, 123bitr4i 269 . 2  |-  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  /\  ( x R y  \/  x  =  y  \/  y R x ) ) )
145, 8, 133bitr4ri 270 1  |-  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z )  /\  (
x R y  \/  x  =  y  \/  y R x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936    e. wcel 1721    =/= wne 2567   A.wral 2666   (/)c0 3588   class class class wbr 4172    Po wpo 4461    Or wor 4462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-v 2918  df-dif 3283  df-nul 3589  df-po 4463  df-so 4464
  Copyright terms: Public domain W3C validator