Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss2f Structured version   Unicode version

Theorem dfss2f 3339
 Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
dfss2f.1
dfss2f.2
Assertion
Ref Expression
dfss2f

Proof of Theorem dfss2f
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfss2 3337 . 2
2 dfss2f.1 . . . . 5
32nfcri 2566 . . . 4
4 dfss2f.2 . . . . 5
54nfcri 2566 . . . 4
63, 5nfim 1832 . . 3
7 nfv 1629 . . 3
8 eleq1 2496 . . . 4
9 eleq1 2496 . . . 4
108, 9imbi12d 312 . . 3
116, 7, 10cbval 1982 . 2
121, 11bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wcel 1725  wnfc 2559   wss 3320 This theorem is referenced by:  dfss3f  3340  ssrd  3353  ss2ab  3411  rankval4  7793  ssrmo  23981  rabexgfGS  23987  ballotth  24795  dvcosre  27717  itgsinexplem1  27724  stoweidlem59  27784 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-in 3327  df-ss 3334
 Copyright terms: Public domain W3C validator