MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Unicode version

Theorem dfss3f 3172
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1  |-  F/_ x A
dfss2f.2  |-  F/_ x B
Assertion
Ref Expression
dfss3f  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3  |-  F/_ x A
2 dfss2f.2 . . 3  |-  F/_ x B
31, 2dfss2f 3171 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
4 df-ral 2548 . 2  |-  ( A. x  e.  A  x  e.  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
53, 4bitr4i 243 1  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    e. wcel 1684   F/_wnfc 2406   A.wral 2543    C_ wss 3152
This theorem is referenced by:  nfss  3173  sigaclcu2  23481  heibor1  26534  bnj1498  29091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator