Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Unicode version

Theorem dfss3f 3342
 Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1
dfss2f.2
Assertion
Ref Expression
dfss3f

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3
2 dfss2f.2 . . 3
31, 2dfss2f 3341 . 2
4 df-ral 2712 . 2
53, 4bitr4i 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550   wcel 1726  wnfc 2561  wral 2707   wss 3322 This theorem is referenced by:  nfss  3343  sigaclcu2  24508  heibor1  26533  stoweidlem52  27791  bnj1498  29504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-in 3329  df-ss 3336
 Copyright terms: Public domain W3C validator