MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Unicode version

Theorem dftpos2 6488
Description: Alternate definition of tpos when  F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Distinct variable group:    x, F

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 6483 . . 3  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
21reseq2d 5138 . 2  |-  ( Rel 
dom  F  ->  (tpos  F  |` 
dom tpos  F )  =  (tpos 
F  |`  `' dom  F
) )
3 reltpos 6476 . . 3  |-  Rel tpos  F
4 resdm 5176 . . 3  |-  ( Rel tpos  F  ->  (tpos  F  |`  dom tpos  F )  = tpos  F
)
53, 4ax-mp 8 . 2  |-  (tpos  F  |` 
dom tpos  F )  = tpos  F
6 df-tpos 6471 . . . 4  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
76reseq1i 5134 . . 3  |-  (tpos  F  |`  `' dom  F )  =  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  |`  `' dom  F )
8 resco 5366 . . 3  |-  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) )  |`  `' dom  F )  =  ( F  o.  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F ) )
9 ssun1 3502 . . . . 5  |-  `' dom  F 
C_  ( `' dom  F  u.  { (/) } )
10 resmpt 5183 . . . . 5  |-  ( `' dom  F  C_  ( `' dom  F  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } ) )
119, 10ax-mp 8 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } )
1211coeq2i 5025 . . 3  |-  ( F  o.  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  |`  `' dom  F ) )  =  ( F  o.  ( x  e.  `' dom  F  |-> 
U. `' { x } ) )
137, 8, 123eqtri 2459 . 2  |-  (tpos  F  |`  `' dom  F )  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) )
142, 5, 133eqtr3g 2490 1  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    u. cun 3310    C_ wss 3312   (/)c0 3620   {csn 3806   U.cuni 4007    e. cmpt 4258   `'ccnv 4869   dom cdm 4870    |` cres 4872    o. ccom 4874   Rel wrel 4875  tpos ctpos 6470
This theorem is referenced by:  tposf12  6496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-tpos 6471
  Copyright terms: Public domain W3C validator