MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr5 Unicode version

Theorem dftr5 4132
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
Assertion
Ref Expression
dftr5  |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
Distinct variable group:    x, y, A

Proof of Theorem dftr5
StepHypRef Expression
1 dftr2 4131 . 2  |-  ( Tr  A  <->  A. y A. x
( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2 alcom 1723 . . 3  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. x A. y ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  A ) )
3 impexp 433 . . . . . . . 8  |-  ( ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  A )  <->  ( y  e.  x  ->  ( x  e.  A  ->  y  e.  A ) ) )
43albii 1556 . . . . . . 7  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. y
( y  e.  x  ->  ( x  e.  A  ->  y  e.  A ) ) )
5 df-ral 2561 . . . . . . 7  |-  ( A. y  e.  x  (
x  e.  A  -> 
y  e.  A )  <->  A. y ( y  e.  x  ->  ( x  e.  A  ->  y  e.  A ) ) )
64, 5bitr4i 243 . . . . . 6  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. y  e.  x  ( x  e.  A  ->  y  e.  A ) )
7 r19.21v 2643 . . . . . 6  |-  ( A. y  e.  x  (
x  e.  A  -> 
y  e.  A )  <-> 
( x  e.  A  ->  A. y  e.  x  y  e.  A )
)
86, 7bitri 240 . . . . 5  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  ( x  e.  A  ->  A. y  e.  x  y  e.  A ) )
98albii 1556 . . . 4  |-  ( A. x A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. x ( x  e.  A  ->  A. y  e.  x  y  e.  A ) )
10 df-ral 2561 . . . 4  |-  ( A. x  e.  A  A. y  e.  x  y  e.  A  <->  A. x ( x  e.  A  ->  A. y  e.  x  y  e.  A ) )
119, 10bitr4i 243 . . 3  |-  ( A. x A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
122, 11bitri 240 . 2  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
131, 12bitri 240 1  |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    e. wcel 1696   A.wral 2556   Tr wtr 4129
This theorem is referenced by:  dftr3  4133  smobeth  8224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-in 3172  df-ss 3179  df-uni 3844  df-tr 4130
  Copyright terms: Public domain W3C validator