MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Unicode version

Theorem dfun2 3417
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 3418 and dfss4 3416 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation  \ (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)

Proof of Theorem dfun2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . . . . . 7  |-  x  e. 
_V
2 eldif 3175 . . . . . . 7  |-  ( x  e.  ( _V  \  A )  <->  ( x  e.  _V  /\  -.  x  e.  A ) )
31, 2mpbiran 884 . . . . . 6  |-  ( x  e.  ( _V  \  A )  <->  -.  x  e.  A )
43anbi1i 676 . . . . 5  |-  ( ( x  e.  ( _V 
\  A )  /\  -.  x  e.  B
)  <->  ( -.  x  e.  A  /\  -.  x  e.  B ) )
5 eldif 3175 . . . . 5  |-  ( x  e.  ( ( _V 
\  A )  \  B )  <->  ( x  e.  ( _V  \  A
)  /\  -.  x  e.  B ) )
6 ioran 476 . . . . 5  |-  ( -.  ( x  e.  A  \/  x  e.  B
)  <->  ( -.  x  e.  A  /\  -.  x  e.  B ) )
74, 5, 63bitr4i 268 . . . 4  |-  ( x  e.  ( ( _V 
\  A )  \  B )  <->  -.  (
x  e.  A  \/  x  e.  B )
)
87con2bii 322 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  -.  x  e.  ( ( _V  \  A ) 
\  B ) )
9 eldif 3175 . . . 4  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) )  <->  ( x  e.  _V  /\  -.  x  e.  ( ( _V  \  A )  \  B
) ) )
101, 9mpbiran 884 . . 3  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) )  <->  -.  x  e.  ( ( _V  \  A )  \  B
) )
118, 10bitr4i 243 . 2  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) ) )
1211uneqri 3330 1  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163
This theorem is referenced by:  dfun3  3420  dfin3  3421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-dif 3168  df-un 3170
  Copyright terms: Public domain W3C validator