MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Unicode version

Theorem dfun2 3404
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 3405 and dfss4 3403 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation  \ (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)

Proof of Theorem dfun2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . 7  |-  x  e. 
_V
2 eldif 3162 . . . . . . 7  |-  ( x  e.  ( _V  \  A )  <->  ( x  e.  _V  /\  -.  x  e.  A ) )
31, 2mpbiran 884 . . . . . 6  |-  ( x  e.  ( _V  \  A )  <->  -.  x  e.  A )
43anbi1i 676 . . . . 5  |-  ( ( x  e.  ( _V 
\  A )  /\  -.  x  e.  B
)  <->  ( -.  x  e.  A  /\  -.  x  e.  B ) )
5 eldif 3162 . . . . 5  |-  ( x  e.  ( ( _V 
\  A )  \  B )  <->  ( x  e.  ( _V  \  A
)  /\  -.  x  e.  B ) )
6 ioran 476 . . . . 5  |-  ( -.  ( x  e.  A  \/  x  e.  B
)  <->  ( -.  x  e.  A  /\  -.  x  e.  B ) )
74, 5, 63bitr4i 268 . . . 4  |-  ( x  e.  ( ( _V 
\  A )  \  B )  <->  -.  (
x  e.  A  \/  x  e.  B )
)
87con2bii 322 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  -.  x  e.  ( ( _V  \  A ) 
\  B ) )
9 eldif 3162 . . . 4  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) )  <->  ( x  e.  _V  /\  -.  x  e.  ( ( _V  \  A )  \  B
) ) )
101, 9mpbiran 884 . . 3  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) )  <->  -.  x  e.  ( ( _V  \  A )  \  B
) )
118, 10bitr4i 243 . 2  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  ( _V  \ 
( ( _V  \  A )  \  B
) ) )
1211uneqri 3317 1  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    u. cun 3150
This theorem is referenced by:  dfun3  3407  dfin3  3408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-un 3157
  Copyright terms: Public domain W3C validator