MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfur2 Unicode version

Theorem dfur2 15344
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2  |-  .1.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  (
( e  .x.  x
)  =  x  /\  ( x  .x.  e )  =  x ) ) )
Distinct variable groups:    x, e, B    R, e, x
Allowed substitution hints:    .x. ( x, e)    .1. ( x, e)

Proof of Theorem dfur2
StepHypRef Expression
1 eqid 2283 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 dfur2.b . . 3  |-  B  =  ( Base `  R
)
31, 2mgpbas 15331 . 2  |-  B  =  ( Base `  (mulGrp `  R ) )
4 dfur2.t . . 3  |-  .x.  =  ( .r `  R )
51, 4mgpplusg 15329 . 2  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
6 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
71, 6rngidval 15343 . 2  |-  .1.  =  ( 0g `  (mulGrp `  R ) )
83, 5, 7grpidval 14384 1  |-  .1.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  (
( e  .x.  x
)  =  x  /\  ( x  .x.  e )  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   iotacio 5217   ` cfv 5255  (class class class)co 5858   Basecbs 13148   .rcmulr 13209  mulGrpcmgp 15325   1rcur 15339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mgp 15326  df-ur 15342
  Copyright terms: Public domain W3C validator