Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1ir Structured version   Unicode version

Theorem dfvd1ir 28602
Description: Inference form of df-vd1 28599 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd1ir.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
dfvd1ir  |-  (. ph  ->.  ps
).

Proof of Theorem dfvd1ir
StepHypRef Expression
1 dfvd1ir.1 . 2  |-  ( ph  ->  ps )
2 df-vd1 28599 . 2  |-  ( (.
ph 
->.  ps ).  <->  ( ph  ->  ps ) )
31, 2mpbir 201 1  |-  (. ph  ->.  ps
).
Colors of variables: wff set class
Syntax hints:    -> wi 4   (.wvd1 28598
This theorem is referenced by:  idn1  28603  vd01  28636  in2  28644  int2  28645  gen11nv  28656  gen12  28657  exinst01  28664  exinst11  28665  e1_  28666  el1  28667  e111  28713  e1111  28714  un0.1  28829  un10  28838  un01  28839  2uasbanhVD  28961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-vd1 28599
  Copyright terms: Public domain W3C validator