Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2ani Unicode version

Theorem dfvd2ani 28352
Description: Inference form of dfvd2an 28351. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2ani.1  |-  (. (. ph ,. ps ).  ->.  ch ).
Assertion
Ref Expression
dfvd2ani  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem dfvd2ani
StepHypRef Expression
1 dfvd2ani.1 . 2  |-  (. (. ph ,. ps ).  ->.  ch ).
2 dfvd2an 28351 . 2  |-  ( (.
(. ph ,. ps ).  ->.  ch
). 
<->  ( ( ph  /\  ps )  ->  ch )
)
31, 2mpbi 199 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   (.wvd1 28337   (.wvhc2 28349
This theorem is referenced by:  int2  28378  el021old  28474  el2122old  28498  un0.1  28554  un10  28563  un01  28564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-vd1 28338  df-vhc2 28350
  Copyright terms: Public domain W3C validator