Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3i Structured version   Unicode version

Theorem dfvd3i 28621
Description: Inference form of dfvd3 28620. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd3i.1  |-  (. ph ,. ps ,. ch  ->.  th ).
Assertion
Ref Expression
dfvd3i  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )

Proof of Theorem dfvd3i
StepHypRef Expression
1 dfvd3i.1 . 2  |-  (. ph ,. ps ,. ch  ->.  th ).
2 dfvd3 28620 . 2  |-  ( (.
ph ,. ps ,. ch  ->.  th ).  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
31, 2mpbi 200 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   (.wvd3 28616
This theorem is referenced by:  in3  28647  in3an  28649  gen31  28659  e333  28782  e233  28814  e323  28815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-vd3 28619
  Copyright terms: Public domain W3C validator