Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3ir Unicode version

Theorem dfvd3ir 28362
Description: Right-to-left inference form of dfvd3 28360. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd3ir.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
dfvd3ir  |-  (. ph ,. ps ,. ch  ->.  th ).

Proof of Theorem dfvd3ir
StepHypRef Expression
1 dfvd3ir.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
2 dfvd3 28360 . 2  |-  ( (.
ph ,. ps ,. ch  ->.  th ).  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
31, 2mpbir 200 1  |-  (. ph ,. ps ,. ch  ->.  th ).
Colors of variables: wff set class
Syntax hints:    -> wi 4   (.wvd3 28356
This theorem is referenced by:  vd03  28371  vd13  28373  vd23  28374  in3an  28383  idn3  28387  gen31  28393  e223  28407  e333  28508  e233  28540  e323  28541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-vd3 28359
  Copyright terms: Public domain W3C validator