MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Unicode version

Theorem dfwe2 4791
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Distinct variable groups:    x, y, R    x, A, y

Proof of Theorem dfwe2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-we 4572 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
2 df-so 4533 . . . 4  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
3 simpr 449 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
4 ax-1 6 . . . . . . . . . . . . . . 15  |-  ( x R z  ->  (
( x R y  /\  y R z )  ->  x R
z ) )
54a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x R z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
6 fr2nr 4589 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
763adantr3 1119 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
8 breq2 4241 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
y R x  <->  y R
z ) )
98anbi2d 686 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( x R y  /\  y R x )  <->  ( x R y  /\  y R z ) ) )
109notbid 287 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( -.  ( x R y  /\  y R x )  <->  -.  ( x R y  /\  y R z ) ) )
117, 10syl5ibcom 213 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  ->  -.  ( x R y  /\  y R z ) ) )
12 pm2.21 103 . . . . . . . . . . . . . . 15  |-  ( -.  ( x R y  /\  y R z )  ->  ( (
x R y  /\  y R z )  ->  x R z ) )
1311, 12syl6 32 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
14 fr3nr 4789 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R z  /\  z R x ) )
15 df-3an 939 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x R y  /\  y R z  /\  z R x )  <->  ( (
x R y  /\  y R z )  /\  z R x ) )
1615biimpri 199 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x R y  /\  y R z )  /\  z R x )  ->  (
x R y  /\  y R z  /\  z R x ) )
1716ancoms 441 . . . . . . . . . . . . . . . . 17  |-  ( ( z R x  /\  ( x R y  /\  y R z ) )  ->  (
x R y  /\  y R z  /\  z R x ) )
1814, 17nsyl 116 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( z R x  /\  ( x R y  /\  y R z ) ) )
1918pm2.21d 101 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( z R x  /\  ( x R y  /\  y R z ) )  ->  x R z ) )
2019exp3a 427 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
z R x  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
215, 13, 203jaod 1249 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( (
x R y  /\  y R z )  ->  x R z ) ) )
22 frirr 4588 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  x  e.  A )  ->  -.  x R x )
23223ad2antr1 1123 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  x R x )
2421, 23jctild 529 . . . . . . . . . . . 12  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
2524ex 425 . . . . . . . . . . 11  |-  ( R  Fr  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( (
x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
2625a2d 25 . . . . . . . . . 10  |-  ( R  Fr  A  ->  (
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  ( (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
2726alimdv 1632 . . . . . . . . 9  |-  ( R  Fr  A  ->  ( A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. z
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
28272alimdv 1634 . . . . . . . 8  |-  ( R  Fr  A  ->  ( A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
29 r3al 2769 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R z  \/  x  =  z  \/  z R x )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) ) )
30 r3al 2769 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
3128, 29, 303imtr4g 263 . . . . . . 7  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
32 ralidm 3755 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
33 breq2 4241 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x R y  <->  x R
z ) )
34 equequ2 1700 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
35 breq1 4240 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y R x  <->  z R x ) )
3633, 34, 353orbi123d 1254 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( x R z  \/  x  =  z  \/  z R x ) ) )
3736cbvralv 2938 . . . . . . . . . 10  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3837ralbii 2735 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3932, 38bitr3i 244 . . . . . . . 8  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
4039ralbii 2735 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
41 df-po 4532 . . . . . . 7  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
4231, 40, 413imtr4g 263 . . . . . 6  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  R  Po  A ) )
4342ancrd 539 . . . . 5  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) ) )
443, 43impbid2 197 . . . 4  |-  ( R  Fr  A  ->  (
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
452, 44syl5bb 250 . . 3  |-  ( R  Fr  A  ->  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
4645pm5.32i 620 . 2  |-  ( ( R  Fr  A  /\  R  Or  A )  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) ) )
471, 46bitri 242 1  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    /\ w3a 937   A.wal 1550    e. wcel 1727   A.wral 2711   class class class wbr 4237    Po wpo 4530    Or wor 4531    Fr wfr 4567    We wwe 4569
This theorem is referenced by:  ordon  4792  f1oweALT  6103  dford2  7604  fpwwe2lem12  8547  fpwwe2lem13  8548  dfon2  25450  fnwe2  27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-br 4238  df-po 4532  df-so 4533  df-fr 4570  df-we 4572
  Copyright terms: Public domain W3C validator