MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfxp3 Structured version   Unicode version

Theorem dfxp3 6409
Description: Define the cross product of three classes. Compare df-xp 4887. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
dfxp3  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z

Proof of Theorem dfxp3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 biidd 230 . . 3  |-  ( u  =  <. x ,  y
>.  ->  ( z  e.  C  <->  z  e.  C
) )
21dfoprab4 6407 . 2  |-  { <. u ,  z >.  |  ( u  e.  ( A  X.  B )  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
3 df-xp 4887 . 2  |-  ( ( A  X.  B )  X.  C )  =  { <. u ,  z
>.  |  ( u  e.  ( A  X.  B
)  /\  z  e.  C ) }
4 df-3an 939 . . 3  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  <->  ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C ) )
54oprabbii 6132 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
62, 3, 53eqtr4i 2468 1  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   <.cop 3819   {copab 4268    X. cxp 4879   {coprab 6085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fv 5465  df-oprab 6088  df-1st 6352  df-2nd 6353
  Copyright terms: Public domain W3C validator