MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfxp3 Unicode version

Theorem dfxp3 6195
Description: Define the cross product of three classes. Compare df-xp 4711. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
dfxp3  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z

Proof of Theorem dfxp3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 biidd 228 . . 3  |-  ( u  =  <. x ,  y
>.  ->  ( z  e.  C  <->  z  e.  C
) )
21dfoprab4 6193 . 2  |-  { <. u ,  z >.  |  ( u  e.  ( A  X.  B )  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
3 df-xp 4711 . 2  |-  ( ( A  X.  B )  X.  C )  =  { <. u ,  z
>.  |  ( u  e.  ( A  X.  B
)  /\  z  e.  C ) }
4 df-3an 936 . . 3  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  <->  ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C ) )
54oprabbii 5919 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  e.  C
) }
62, 3, 53eqtr4i 2326 1  |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   <.cop 3656   {copab 4092    X. cxp 4703   {coprab 5875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279  df-oprab 5878  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator