Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Unicode version

Theorem dgraaub 27311
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraaub  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  <_  (deg `  P
) )

Proof of Theorem dgraaub
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 733 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  A  e.  CC )
2 eldifsn 3919 . . . . . . 7  |-  ( P  e.  ( (Poly `  QQ )  \  { 0 p } )  <->  ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p ) )
32biimpri 198 . . . . . 6  |-  ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  ->  P  e.  ( (Poly `  QQ )  \  {
0 p } ) )
43adantr 452 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  P  e.  ( (Poly `  QQ )  \  { 0 p }
) )
5 simprr 734 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  ( P `  A )  =  0 )
6 fveq1 5719 . . . . . . 7  |-  ( a  =  P  ->  (
a `  A )  =  ( P `  A ) )
76eqeq1d 2443 . . . . . 6  |-  ( a  =  P  ->  (
( a `  A
)  =  0  <->  ( P `  A )  =  0 ) )
87rspcev 3044 . . . . 5  |-  ( ( P  e.  ( (Poly `  QQ )  \  {
0 p } )  /\  ( P `  A )  =  0 )  ->  E. a  e.  ( (Poly `  QQ )  \  { 0 p } ) ( a `
 A )  =  0 )
94, 5, 8syl2anc 643 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  E. a  e.  ( (Poly `  QQ )  \  { 0 p } ) ( a `
 A )  =  0 )
10 elqaa 20231 . . . 4  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. a  e.  ( (Poly `  QQ )  \  { 0 p } ) ( a `
 A )  =  0 ) )
111, 9, 10sylanbrc 646 . . 3  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  A  e.  AA )
12 dgraaval 27307 . . 3  |-  ( A  e.  AA  ->  (degAA `  A )  =  sup ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  `'  <  ) )
1311, 12syl 16 . 2  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  =  sup ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  `'  <  ) )
14 ssrab2 3420 . . . 4  |-  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0 p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) }  C_  NN
15 nnuz 10513 . . . 4  |-  NN  =  ( ZZ>= `  1 )
1614, 15sseqtri 3372 . . 3  |-  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0 p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) }  C_  ( ZZ>= ` 
1 )
17 dgrnznn 27298 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (deg `  P
)  e.  NN )
18 eqid 2435 . . . . . 6  |-  (deg `  P )  =  (deg
`  P )
195, 18jctil 524 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) )
20 fveq2 5720 . . . . . . . 8  |-  ( b  =  P  ->  (deg `  b )  =  (deg
`  P ) )
2120eqeq1d 2443 . . . . . . 7  |-  ( b  =  P  ->  (
(deg `  b )  =  (deg `  P )  <->  (deg
`  P )  =  (deg `  P )
) )
22 fveq1 5719 . . . . . . . 8  |-  ( b  =  P  ->  (
b `  A )  =  ( P `  A ) )
2322eqeq1d 2443 . . . . . . 7  |-  ( b  =  P  ->  (
( b `  A
)  =  0  <->  ( P `  A )  =  0 ) )
2421, 23anbi12d 692 . . . . . 6  |-  ( b  =  P  ->  (
( (deg `  b
)  =  (deg `  P )  /\  (
b `  A )  =  0 )  <->  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) ) )
2524rspcev 3044 . . . . 5  |-  ( ( P  e.  ( (Poly `  QQ )  \  {
0 p } )  /\  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) )  ->  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) )
264, 19, 25syl2anc 643 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  E. b  e.  ( (Poly `  QQ )  \  { 0 p } ) ( (deg
`  b )  =  (deg `  P )  /\  ( b `  A
)  =  0 ) )
27 eqeq2 2444 . . . . . . 7  |-  ( a  =  (deg `  P
)  ->  ( (deg `  b )  =  a  <-> 
(deg `  b )  =  (deg `  P )
) )
2827anbi1d 686 . . . . . 6  |-  ( a  =  (deg `  P
)  ->  ( (
(deg `  b )  =  a  /\  (
b `  A )  =  0 )  <->  ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
2928rexbidv 2718 . . . . 5  |-  ( a  =  (deg `  P
)  ->  ( E. b  e.  ( (Poly `  QQ )  \  {
0 p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 )  <->  E. b  e.  (
(Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
3029elrab 3084 . . . 4  |-  ( (deg
`  P )  e. 
{ a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) }  <->  ( (deg `  P )  e.  NN  /\ 
E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
3117, 26, 30sylanbrc 646 . . 3  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (deg `  P
)  e.  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0 p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) } )
32 infmssuzle 10550 . . 3  |-  ( ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) }  C_  ( ZZ>=
`  1 )  /\  (deg `  P )  e. 
{ a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } )  ->  sup ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p } ) ( (deg
`  b )  =  a  /\  ( b `
 A )  =  0 ) } ,  RR ,  `'  <  )  <_  (deg `  P
) )
3316, 31, 32sylancr 645 . 2  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  sup ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0 p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  `'  <  )  <_ 
(deg `  P )
)
3413, 33eqbrtrd 4224 1  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0 p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  <_  (deg `  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   {crab 2701    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204   `'ccnv 4869   ` cfv 5446   supcsup 7437   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    < clt 9112    <_ cle 9113   NNcn 9992   ZZ>=cuz 10480   QQcq 10566   0 pc0p 19553  Polycply 20095  degcdgr 20098   AAcaa 20223  degAAcdgraa 27303
This theorem is referenced by:  dgraa0p  27312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-0p 19554  df-ply 20099  df-coe 20101  df-dgr 20102  df-aa 20224  df-dgraa 27305
  Copyright terms: Public domain W3C validator