MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Unicode version

Theorem dgrco 19656
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1  |-  M  =  (deg `  F )
dgrco.2  |-  N  =  (deg `  G )
dgrco.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrco.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrco  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )

Proof of Theorem dgrco
Dummy variables  f  x  y  d  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 19582 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
2 dgrco.3 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
31, 2sseldi 3178 . 2  |-  ( ph  ->  F  e.  (Poly `  CC ) )
4 dgrco.1 . . . 4  |-  M  =  (deg `  F )
5 dgrcl 19615 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
62, 5syl 15 . . . 4  |-  ( ph  ->  (deg `  F )  e.  NN0 )
74, 6syl5eqel 2367 . . 3  |-  ( ph  ->  M  e.  NN0 )
8 breq2 4027 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  0 ) )
98imbi1d 308 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
109ralbidv 2563 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  0  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1110imbi2d 307 . . . 4  |-  ( x  =  0  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
12 breq2 4027 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  d ) )
1312imbi1d 308 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1413ralbidv 2563 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1514imbi2d 307 . . . 4  |-  ( x  =  d  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
16 breq2 4027 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  ( d  +  1 ) ) )
1716imbi1d 308 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1817ralbidv 2563 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1918imbi2d 307 . . . 4  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
( d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
20 breq2 4027 . . . . . . 7  |-  ( x  =  M  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  M ) )
2120imbi1d 308 . . . . . 6  |-  ( x  =  M  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  M  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2221ralbidv 2563 . . . . 5  |-  ( x  =  M  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2322imbi2d 307 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
24 dgrco.2 . . . . . . . . . . . 12  |-  N  =  (deg `  G )
25 dgrco.4 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  (Poly `  S ) )
26 dgrcl 19615 . . . . . . . . . . . . 13  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
2725, 26syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  e.  NN0 )
2824, 27syl5eqel 2367 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2928nn0cnd 10020 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
3029adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  N  e.  CC )
3130mul02d 9010 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( 0  x.  N
)  =  0 )
32 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  <_  0 )
33 dgrcl 19615 . . . . . . . . . . . 12  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
3433ad2antrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  NN0 )
3534nn0ge0d 10021 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
0  <_  (deg `  f
) )
3634nn0red 10019 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  RR )
37 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
38 letri3 8907 . . . . . . . . . . 11  |-  ( ( (deg `  f )  e.  RR  /\  0  e.  RR )  ->  (
(deg `  f )  =  0  <->  ( (deg `  f )  <_  0  /\  0  <_  (deg `  f ) ) ) )
3936, 37, 38sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  (
(deg `  f )  <_  0  /\  0  <_ 
(deg `  f )
) ) )
4032, 35, 39mpbir2and 888 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  0 )
4140oveq1d 5873 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  ( 0  x.  N ) )
4231, 41, 403eqtr4d 2325 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  (deg `  f
) )
43 fconstmpt 4732 . . . . . . . . 9  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( y  e.  CC  |->  ( f `
 0 ) )
44 0dgrb 19628 . . . . . . . . . . 11  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
4544ad2antrl 708 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  f  =  ( CC  X.  { ( f ` 
0 ) } ) ) )
4640, 45mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) )
4725adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  e.  (Poly `  S
) )
48 plyf 19580 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
4947, 48syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G : CC --> CC )
50 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( G : CC --> CC  /\  y  e.  CC )  ->  ( G `  y
)  e.  CC )
5149, 50sylan 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0
) )  /\  y  e.  CC )  ->  ( G `  y )  e.  CC )
5249feqmptd 5575 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  =  ( y  e.  CC  |->  ( G `  y ) ) )
53 fconstmpt 4732 . . . . . . . . . . 11  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( x  e.  CC  |->  ( f `
 0 ) )
5446, 53syl6eq 2331 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( x  e.  CC  |->  ( f `
 0 ) ) )
55 eqidd 2284 . . . . . . . . . 10  |-  ( x  =  ( G `  y )  ->  (
f `  0 )  =  ( f ` 
0 ) )
5651, 52, 54, 55fmptco 5691 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( f  o.  G
)  =  ( y  e.  CC  |->  ( f `
 0 ) ) )
5743, 46, 563eqtr4a 2341 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( f  o.  G ) )
5857fveq2d 5529 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  (deg `  ( f  o.  G ) ) )
5942, 58eqtr2d 2316 . . . . . 6  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )
6059expr 598 . . . . 5  |-  ( (
ph  /\  f  e.  (Poly `  CC ) )  ->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
6160ralrimiva 2626 . . . 4  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
62 fveq2 5525 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6362breq1d 4033 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  f )  <_  d  <->  (deg `  g )  <_  d ) )
64 coeq1 4841 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f  o.  G )  =  ( g  o.  G ) )
6564fveq2d 5529 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( g  o.  G ) ) )
6662oveq1d 5873 . . . . . . . . . 10  |-  ( f  =  g  ->  (
(deg `  f )  x.  N )  =  ( (deg `  g )  x.  N ) )
6765, 66eqeq12d 2297 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
6863, 67imbi12d 311 . . . . . . . 8  |-  ( f  =  g  ->  (
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )
6968cbvralv 2764 . . . . . . 7  |-  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  A. g  e.  (Poly `  CC ) ( (deg
`  g )  <_ 
d  ->  (deg `  (
g  o.  G ) )  =  ( (deg
`  g )  x.  N ) ) )
7033ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  NN0 )
7170nn0red 10019 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  RR )
72 nn0p1nn 10003 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  NN )
7372ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  NN )
7473nnred 9761 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  RR )
7571, 74leloed 8962 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  <->  ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) ) ) )
76 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
d  e.  NN0 )
77 nn0leltp1 10075 . . . . . . . . . . . . 13  |-  ( ( (deg `  f )  e.  NN0  /\  d  e. 
NN0 )  ->  (
(deg `  f )  <_  d  <->  (deg `  f )  <  ( d  +  1 ) ) )
7870, 76, 77syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  <->  (deg `  f
)  <  ( d  +  1 ) ) )
79 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  g )  =  (deg
`  f ) )
8079breq1d 4033 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  g )  <_  d  <->  (deg `  f )  <_  d ) )
81 coeq1 4841 . . . . . . . . . . . . . . . . 17  |-  ( g  =  f  ->  (
g  o.  G )  =  ( f  o.  G ) )
8281fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( f  o.  G ) ) )
8379oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
(deg `  g )  x.  N )  =  ( (deg `  f )  x.  N ) )
8482, 83eqeq12d 2297 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8580, 84imbi12d 311 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
8685rspcva 2882 . . . . . . . . . . . . 13  |-  ( ( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  ->  (
(deg `  f )  <_  d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
8786adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8878, 87sylbird 226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
89 eqid 2283 . . . . . . . . . . . . 13  |-  (deg `  f )  =  (deg
`  f )
90 simprll 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  f  e.  (Poly `  CC )
)
911, 25sseldi 3178 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  (Poly `  CC ) )
9291ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  G  e.  (Poly `  CC )
)
93 eqid 2283 . . . . . . . . . . . . 13  |-  (coeff `  f )  =  (coeff `  f )
94 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  d  e.  NN0 )
95 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  f )  =  ( d  +  1 ) )
96 simprlr 739 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
97 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  g )  =  (deg
`  h ) )
9897breq1d 4033 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  g )  <_  d  <->  (deg `  h )  <_  d ) )
99 coeq1 4841 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  h  ->  (
g  o.  G )  =  ( h  o.  G ) )
10099fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( h  o.  G ) ) )
10197oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (
(deg `  g )  x.  N )  =  ( (deg `  h )  x.  N ) )
102100, 101eqeq12d 2297 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10398, 102imbi12d 311 . . . . . . . . . . . . . . 15  |-  ( g  =  h  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  h )  <_  d  ->  (deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) ) )
104103cbvralv 2764 . . . . . . . . . . . . . 14  |-  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  A. h  e.  (Poly `  CC ) ( (deg
`  h )  <_ 
d  ->  (deg `  (
h  o.  G ) )  =  ( (deg
`  h )  x.  N ) ) )
10596, 104sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. h  e.  (Poly `  CC )
( (deg `  h
)  <_  d  ->  (deg
`  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10689, 24, 90, 92, 93, 94, 95, 105dgrcolem2 19655 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  ( f  o.  G
) )  =  ( (deg `  f )  x.  N ) )
107106expr 598 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  =  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
10888, 107jaod 369 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
10975, 108sylbid 206 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
110109expr 598 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  CC )
)  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
111110ralrimdva 2633 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
11269, 111syl5bi 208 . . . . . 6  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
113112expcom 424 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) ) )
114113a2d 23 . . . 4  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
11511, 15, 19, 23, 61, 114nn0ind 10108 . . 3  |-  ( M  e.  NN0  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1167, 115mpcom 32 . 2  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
1177nn0red 10019 . . 3  |-  ( ph  ->  M  e.  RR )
118117leidd 9339 . 2  |-  ( ph  ->  M  <_  M )
119 fveq2 5525 . . . . . 6  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
120119, 4syl6eqr 2333 . . . . 5  |-  ( f  =  F  ->  (deg `  f )  =  M )
121120breq1d 4033 . . . 4  |-  ( f  =  F  ->  (
(deg `  f )  <_  M  <->  M  <_  M ) )
122 coeq1 4841 . . . . . 6  |-  ( f  =  F  ->  (
f  o.  G )  =  ( F  o.  G ) )
123122fveq2d 5529 . . . . 5  |-  ( f  =  F  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( F  o.  G ) ) )
124120oveq1d 5873 . . . . 5  |-  ( f  =  F  ->  (
(deg `  f )  x.  N )  =  ( M  x.  N ) )
125123, 124eqeq12d 2297 . . . 4  |-  ( f  =  F  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( F  o.  G ) )  =  ( M  x.  N
) ) )
126121, 125imbi12d 311 . . 3  |-  ( f  =  F  ->  (
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
127126rspcv 2880 . 2  |-  ( F  e.  (Poly `  CC )  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
1283, 116, 118, 127syl3c 57 1  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {csn 3640   class class class wbr 4023    e. cmpt 4077    X. cxp 4687    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  taylply2  19747  ftalem7  20316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator