MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Unicode version

Theorem dgrcolem1 19670
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1  |-  N  =  (deg `  G )
dgrcolem1.2  |-  ( ph  ->  M  e.  NN )
dgrcolem1.3  |-  ( ph  ->  N  e.  NN )
dgrcolem1.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrcolem1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Distinct variable groups:    x, G    x, M    ph, x
Allowed substitution hints:    S( x)    N( x)

Proof of Theorem dgrcolem1
Dummy variables  w  d  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2  |-  ( ph  ->  M  e.  NN )
2 oveq2 5882 . . . . . . 7  |-  ( y  =  1  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
1 ) )
32mpteq2dv 4123 . . . . . 6  |-  ( y  =  1  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) ) )
43fveq2d 5545 . . . . 5  |-  ( y  =  1  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) ) )
5 oveq1 5881 . . . . 5  |-  ( y  =  1  ->  (
y  x.  N )  =  ( 1  x.  N ) )
64, 5eqeq12d 2310 . . . 4  |-  ( y  =  1  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ 1 ) ) )  =  ( 1  x.  N ) ) )
76imbi2d 307 . . 3  |-  ( y  =  1  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) ) ) )
8 oveq2 5882 . . . . . . 7  |-  ( y  =  d  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
d ) )
98mpteq2dv 4123 . . . . . 6  |-  ( y  =  d  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) ) )
109fveq2d 5545 . . . . 5  |-  ( y  =  d  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) ) )
11 oveq1 5881 . . . . 5  |-  ( y  =  d  ->  (
y  x.  N )  =  ( d  x.  N ) )
1210, 11eqeq12d 2310 . . . 4  |-  ( y  =  d  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  ( d  x.  N ) ) )
1312imbi2d 307 . . 3  |-  ( y  =  d  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N ) ) ) )
14 oveq2 5882 . . . . . . 7  |-  ( y  =  ( d  +  1 )  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
( d  +  1 ) ) )
1514mpteq2dv 4123 . . . . . 6  |-  ( y  =  ( d  +  1 )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) ) )
1615fveq2d 5545 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) ) )
17 oveq1 5881 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (
y  x.  N )  =  ( ( d  +  1 )  x.  N ) )
1816, 17eqeq12d 2310 . . . 4  |-  ( y  =  ( d  +  1 )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) )
1918imbi2d 307 . . 3  |-  ( y  =  ( d  +  1 )  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
20 oveq2 5882 . . . . . . 7  |-  ( y  =  M  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^ M ) )
2120mpteq2dv 4123 . . . . . 6  |-  ( y  =  M  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ M ) ) )
2221fveq2d 5545 . . . . 5  |-  ( y  =  M  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) ) )
23 oveq1 5881 . . . . 5  |-  ( y  =  M  ->  (
y  x.  N )  =  ( M  x.  N ) )
2422, 23eqeq12d 2310 . . . 4  |-  ( y  =  M  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
2524imbi2d 307 . . 3  |-  ( y  =  M  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) ) ) )
26 dgrcolem1.4 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  (Poly `  S ) )
27 plyf 19596 . . . . . . . . . . 11  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
2826, 27syl 15 . . . . . . . . . 10  |-  ( ph  ->  G : CC --> CC )
29 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( G : CC --> CC  /\  x  e.  CC )  ->  ( G `  x
)  e.  CC )
3028, 29sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( G `
 x )  e.  CC )
3130exp1d 11256 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( G `  x ) ^ 1 )  =  ( G `  x
) )
3231mpteq2dva 4122 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  ( x  e.  CC  |->  ( G `  x ) ) )
3328feqmptd 5591 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  CC  |->  ( G `
 x ) ) )
3432, 33eqtr4d 2331 . . . . . 6  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  G )
3534fveq2d 5545 . . . . 5  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  (deg `  G
) )
36 dgrcolem1.1 . . . . 5  |-  N  =  (deg `  G )
3735, 36syl6eqr 2346 . . . 4  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  N )
38 dgrcolem1.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
3938nncnd 9778 . . . . 5  |-  ( ph  ->  N  e.  CC )
4039mulid2d 8869 . . . 4  |-  ( ph  ->  ( 1  x.  N
)  =  N )
4137, 40eqtr4d 2331 . . 3  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) )
4230adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  ( G `  x )  e.  CC )
43 nnnn0 9988 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  d  e.  NN0 )
4443adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  d  e. 
NN0 )
4544adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  d  e.  NN0 )
4642, 45expp1d 11262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ ( d  +  1 ) )  =  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) )
4746mpteq2dva 4122 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) ) )
48 cnex 8834 . . . . . . . . . . . 12  |-  CC  e.  _V
4948a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
50 ovex 5899 . . . . . . . . . . . 12  |-  ( ( G `  x ) ^ d )  e. 
_V
5150a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ d )  e.  _V )
52 eqidd 2297 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
5333adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( x  e.  CC  |->  ( G `  x ) ) )
5449, 51, 42, 52, 53offval2 6111 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d
)  x.  ( G `
 x ) ) ) )
5547, 54eqtr4d 2331 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  o F  x.  G
) )
5655fveq2d 5545 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) ) )
5756adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) ) )
58 nncn 9770 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  CC )
5958adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  CC )
60 ax-1cn 8811 . . . . . . . . . . . 12  |-  1  e.  CC
6160a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  1  e.  CC )
6239adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  CC )
6359, 61, 62adddird 8876 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  ( 1  x.  N ) ) )
6462mulid2d 8869 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( 1  x.  N )  =  N )
6564oveq2d 5890 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  x.  N )  +  ( 1  x.  N ) )  =  ( ( d  x.  N )  +  N
) )
6663, 65eqtrd 2328 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N
) )
6766adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N ) )
68 eqidd 2297 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  =  ( y  e.  CC  |->  ( y ^
d ) ) )
69 oveq1 5881 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  ->  (
y ^ d )  =  ( ( G `
 x ) ^
d ) )
7042, 53, 68, 69fmptco 5707 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
71 ssid 3210 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
7271a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  CC  C_  CC )
73 plypow 19603 . . . . . . . . . . . . . 14  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  d  e. 
NN0 )  ->  (
y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
7472, 61, 44, 73syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
75 plyssc 19598 . . . . . . . . . . . . . 14  |-  (Poly `  S )  C_  (Poly `  CC )
7626adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  S )
)
7775, 76sseldi 3191 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  CC )
)
78 addcl 8835 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  +  w
)  e.  CC )
7978adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  +  w )  e.  CC )
80 mulcl 8837 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
8180adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
8274, 77, 79, 81plyco 19639 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  e.  (Poly `  CC ) )
8370, 82eqeltrrd 2371 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  e.  (Poly `  CC ) )
8483adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  e.  (Poly `  CC ) )
85 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )
86 simpr 447 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  NN )
8738adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  NN )
8886, 87nnmulcld 9809 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  e.  NN )
8988nnne0d 9806 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  =/=  0 )
9089adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
d  x.  N )  =/=  0 )
9185, 90eqnetrd 2477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =/=  0 )
92 fveq2 5541 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0 p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  (deg
`  0 p ) )
93 dgr0 19659 . . . . . . . . . . . . 13  |-  (deg ` 
0 p )  =  0
9492, 93syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0 p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  0 )
9594necon3i 2498 . . . . . . . . . . 11  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =/=  0  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0 p )
9691, 95syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0 p )
9777adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  e.  (Poly `  CC )
)
9838nnne0d 9806 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
99 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
10099, 93syl6eq 2344 . . . . . . . . . . . . . . 15  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
10136, 100syl5eq 2340 . . . . . . . . . . . . . 14  |-  ( G  =  0 p  ->  N  =  0 )
102101necon3i 2498 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  G  =/=  0 p )
10398, 102syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  G  =/=  0 p )
104103adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =/=  0 p )
105104adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  =/=  0 p )
106 eqid 2296 . . . . . . . . . . 11  |-  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
107106, 36dgrmul 19667 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  e.  (Poly `  CC )  /\  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  =/=  0 p )  /\  ( G  e.  (Poly `  CC )  /\  G  =/=  0 p ) )  -> 
(deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) )  =  ( (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  +  N
) )
10884, 96, 97, 105, 107syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  o F  x.  G ) )  =  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N ) )
109 oveq1 5881 . . . . . . . . . 10  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
110109adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
111108, 110eqtrd 2328 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  o F  x.  G ) )  =  ( ( d  x.  N )  +  N ) )
11267, 111eqtr4d 2331 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  (deg `  (
( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  o F  x.  G ) ) )
11357, 112eqtr4d 2331 . . . . . 6  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) )
114113ex 423 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) ) )
115114expcom 424 . . . 4  |-  ( d  e.  NN  ->  ( ph  ->  ( (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
)  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
116115a2d 23 . . 3  |-  ( d  e.  NN  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
1177, 13, 19, 25, 41, 116nnind 9780 . 2  |-  ( M  e.  NN  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
1181, 117mpcom 32 1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165    e. cmpt 4093    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   NNcn 9762   NN0cn0 9981   ^cexp 11120   0 pc0p 19040  Polycply 19582  degcdgr 19585
This theorem is referenced by:  dgrcolem2  19671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-0p 19041  df-ply 19586  df-coe 19588  df-dgr 19589
  Copyright terms: Public domain W3C validator