MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Unicode version

Theorem dgrcolem1 20183
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1  |-  N  =  (deg `  G )
dgrcolem1.2  |-  ( ph  ->  M  e.  NN )
dgrcolem1.3  |-  ( ph  ->  N  e.  NN )
dgrcolem1.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrcolem1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Distinct variable groups:    x, G    x, M    ph, x
Allowed substitution hints:    S( x)    N( x)

Proof of Theorem dgrcolem1
Dummy variables  w  d  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2  |-  ( ph  ->  M  e.  NN )
2 oveq2 6081 . . . . . . 7  |-  ( y  =  1  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
1 ) )
32mpteq2dv 4288 . . . . . 6  |-  ( y  =  1  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) ) )
43fveq2d 5724 . . . . 5  |-  ( y  =  1  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) ) )
5 oveq1 6080 . . . . 5  |-  ( y  =  1  ->  (
y  x.  N )  =  ( 1  x.  N ) )
64, 5eqeq12d 2449 . . . 4  |-  ( y  =  1  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ 1 ) ) )  =  ( 1  x.  N ) ) )
76imbi2d 308 . . 3  |-  ( y  =  1  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) ) ) )
8 oveq2 6081 . . . . . . 7  |-  ( y  =  d  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
d ) )
98mpteq2dv 4288 . . . . . 6  |-  ( y  =  d  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) ) )
109fveq2d 5724 . . . . 5  |-  ( y  =  d  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) ) )
11 oveq1 6080 . . . . 5  |-  ( y  =  d  ->  (
y  x.  N )  =  ( d  x.  N ) )
1210, 11eqeq12d 2449 . . . 4  |-  ( y  =  d  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  ( d  x.  N ) ) )
1312imbi2d 308 . . 3  |-  ( y  =  d  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N ) ) ) )
14 oveq2 6081 . . . . . . 7  |-  ( y  =  ( d  +  1 )  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
( d  +  1 ) ) )
1514mpteq2dv 4288 . . . . . 6  |-  ( y  =  ( d  +  1 )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) ) )
1615fveq2d 5724 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) ) )
17 oveq1 6080 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (
y  x.  N )  =  ( ( d  +  1 )  x.  N ) )
1816, 17eqeq12d 2449 . . . 4  |-  ( y  =  ( d  +  1 )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) )
1918imbi2d 308 . . 3  |-  ( y  =  ( d  +  1 )  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
20 oveq2 6081 . . . . . . 7  |-  ( y  =  M  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^ M ) )
2120mpteq2dv 4288 . . . . . 6  |-  ( y  =  M  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ M ) ) )
2221fveq2d 5724 . . . . 5  |-  ( y  =  M  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) ) )
23 oveq1 6080 . . . . 5  |-  ( y  =  M  ->  (
y  x.  N )  =  ( M  x.  N ) )
2422, 23eqeq12d 2449 . . . 4  |-  ( y  =  M  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
2524imbi2d 308 . . 3  |-  ( y  =  M  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) ) ) )
26 dgrcolem1.4 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  (Poly `  S ) )
27 plyf 20109 . . . . . . . . . . 11  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ph  ->  G : CC --> CC )
2928ffvelrnda 5862 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( G `
 x )  e.  CC )
3029exp1d 11510 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( G `  x ) ^ 1 )  =  ( G `  x
) )
3130mpteq2dva 4287 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  ( x  e.  CC  |->  ( G `  x ) ) )
3228feqmptd 5771 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  CC  |->  ( G `
 x ) ) )
3331, 32eqtr4d 2470 . . . . . 6  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  G )
3433fveq2d 5724 . . . . 5  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  (deg `  G
) )
35 dgrcolem1.1 . . . . 5  |-  N  =  (deg `  G )
3634, 35syl6eqr 2485 . . . 4  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  N )
37 dgrcolem1.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
3837nncnd 10008 . . . . 5  |-  ( ph  ->  N  e.  CC )
3938mulid2d 9098 . . . 4  |-  ( ph  ->  ( 1  x.  N
)  =  N )
4036, 39eqtr4d 2470 . . 3  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) )
4129adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  ( G `  x )  e.  CC )
42 nnnn0 10220 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  d  e.  NN0 )
4342adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  d  e. 
NN0 )
4443adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  d  e.  NN0 )
4541, 44expp1d 11516 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ ( d  +  1 ) )  =  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) )
4645mpteq2dva 4287 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) ) )
47 cnex 9063 . . . . . . . . . . . 12  |-  CC  e.  _V
4847a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
49 ovex 6098 . . . . . . . . . . . 12  |-  ( ( G `  x ) ^ d )  e. 
_V
5049a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ d )  e.  _V )
51 eqidd 2436 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
5232adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( x  e.  CC  |->  ( G `  x ) ) )
5348, 50, 41, 51, 52offval2 6314 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d
)  x.  ( G `
 x ) ) ) )
5446, 53eqtr4d 2470 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  o F  x.  G
) )
5554fveq2d 5724 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) ) )
5655adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) ) )
57 nncn 10000 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  CC )
5857adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  CC )
59 ax-1cn 9040 . . . . . . . . . . . 12  |-  1  e.  CC
6059a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  1  e.  CC )
6138adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  CC )
6258, 60, 61adddird 9105 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  ( 1  x.  N ) ) )
6361mulid2d 9098 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( 1  x.  N )  =  N )
6463oveq2d 6089 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  x.  N )  +  ( 1  x.  N ) )  =  ( ( d  x.  N )  +  N
) )
6562, 64eqtrd 2467 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N
) )
6665adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N ) )
67 eqidd 2436 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  =  ( y  e.  CC  |->  ( y ^
d ) ) )
68 oveq1 6080 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  ->  (
y ^ d )  =  ( ( G `
 x ) ^
d ) )
6941, 52, 67, 68fmptco 5893 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
70 ssid 3359 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
7170a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  CC  C_  CC )
72 plypow 20116 . . . . . . . . . . . . . 14  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  d  e. 
NN0 )  ->  (
y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
7371, 60, 43, 72syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
74 plyssc 20111 . . . . . . . . . . . . . 14  |-  (Poly `  S )  C_  (Poly `  CC )
7526adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  S )
)
7674, 75sseldi 3338 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  CC )
)
77 addcl 9064 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  +  w
)  e.  CC )
7877adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  +  w )  e.  CC )
79 mulcl 9066 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
8079adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
8173, 76, 78, 80plyco 20152 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  e.  (Poly `  CC ) )
8269, 81eqeltrrd 2510 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  e.  (Poly `  CC ) )
8382adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  e.  (Poly `  CC ) )
84 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )
85 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  NN )
8637adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  NN )
8785, 86nnmulcld 10039 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  e.  NN )
8887nnne0d 10036 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  =/=  0 )
8988adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
d  x.  N )  =/=  0 )
9084, 89eqnetrd 2616 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =/=  0 )
91 fveq2 5720 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0 p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  (deg
`  0 p ) )
92 dgr0 20172 . . . . . . . . . . . . 13  |-  (deg ` 
0 p )  =  0
9391, 92syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0 p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  0 )
9493necon3i 2637 . . . . . . . . . . 11  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =/=  0  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0 p )
9590, 94syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0 p )
9676adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  e.  (Poly `  CC )
)
9737nnne0d 10036 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
98 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
9998, 92syl6eq 2483 . . . . . . . . . . . . . . 15  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
10035, 99syl5eq 2479 . . . . . . . . . . . . . 14  |-  ( G  =  0 p  ->  N  =  0 )
101100necon3i 2637 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  G  =/=  0 p )
10297, 101syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  =/=  0 p )
103102adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =/=  0 p )
104103adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  =/=  0 p )
105 eqid 2435 . . . . . . . . . . 11  |-  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
106105, 35dgrmul 20180 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  e.  (Poly `  CC )  /\  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  =/=  0 p )  /\  ( G  e.  (Poly `  CC )  /\  G  =/=  0 p ) )  -> 
(deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  o F  x.  G ) )  =  ( (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  +  N
) )
10783, 95, 96, 104, 106syl22anc 1185 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  o F  x.  G ) )  =  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N ) )
108 oveq1 6080 . . . . . . . . . 10  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
109108adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
110107, 109eqtrd 2467 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  o F  x.  G ) )  =  ( ( d  x.  N )  +  N ) )
11166, 110eqtr4d 2470 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  (deg `  (
( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  o F  x.  G ) ) )
11256, 111eqtr4d 2470 . . . . . 6  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) )
113112ex 424 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) ) )
114113expcom 425 . . . 4  |-  ( d  e.  NN  ->  ( ph  ->  ( (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
)  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
115114a2d 24 . . 3  |-  ( d  e.  NN  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
1167, 13, 19, 25, 40, 115nnind 10010 . 2  |-  ( M  e.  NN  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
1171, 116mpcom 34 1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   _Vcvv 2948    C_ wss 3312    e. cmpt 4258    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987   NNcn 9992   NN0cn0 10213   ^cexp 11374   0 pc0p 19553  Polycply 20095  degcdgr 20098
This theorem is referenced by:  dgrcolem2  20184
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-0p 19554  df-ply 20099  df-coe 20101  df-dgr 20102
  Copyright terms: Public domain W3C validator