MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Unicode version

Theorem dgreq0 20184
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1  |-  N  =  (deg `  F )
dgreq0.2  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgreq0  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )

Proof of Theorem dgreq0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6  |-  A  =  (coeff `  F )
2 fveq2 5729 . . . . . 6  |-  ( F  =  0 p  -> 
(coeff `  F )  =  (coeff `  0 p
) )
31, 2syl5eq 2481 . . . . 5  |-  ( F  =  0 p  ->  A  =  (coeff `  0 p ) )
4 coe0 20175 . . . . 5  |-  (coeff ` 
0 p )  =  ( NN0  X.  {
0 } )
53, 4syl6eq 2485 . . . 4  |-  ( F  =  0 p  ->  A  =  ( NN0  X. 
{ 0 } ) )
6 dgreq0.1 . . . . . 6  |-  N  =  (deg `  F )
7 fveq2 5729 . . . . . 6  |-  ( F  =  0 p  -> 
(deg `  F )  =  (deg `  0 p
) )
86, 7syl5eq 2481 . . . . 5  |-  ( F  =  0 p  ->  N  =  (deg `  0 p ) )
9 dgr0 20181 . . . . 5  |-  (deg ` 
0 p )  =  0
108, 9syl6eq 2485 . . . 4  |-  ( F  =  0 p  ->  N  =  0 )
115, 10fveq12d 5735 . . 3  |-  ( F  =  0 p  -> 
( A `  N
)  =  ( ( NN0  X.  { 0 } ) `  0
) )
12 0nn0 10237 . . . 4  |-  0  e.  NN0
13 fvconst2g 5946 . . . 4  |-  ( ( 0  e.  NN0  /\  0  e.  NN0 )  -> 
( ( NN0  X.  { 0 } ) `
 0 )  =  0 )
1412, 12, 13mp2an 655 . . 3  |-  ( ( NN0  X.  { 0 } ) `  0
)  =  0
1511, 14syl6eq 2485 . 2  |-  ( F  =  0 p  -> 
( A `  N
)  =  0 )
161coefv0 20167 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
1716adantr 453 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  ( A `
 0 ) )
18 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  NN )
1918nnred 10016 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
2019ltm1d 9944 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  <  N )
21 simpll 732 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  F  e.  (Poly `  S ) )
22 nnm1nn0 10262 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2322adantl 454 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  NN0 )
241, 6dgrub 20154 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  N )
25243expia 1156 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)
2625ad2ant2rl 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_  N ) )
27 simplr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( A `  N )  =  0 )
28 fveq2 5729 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  k  ->  ( A `  N )  =  ( A `  k ) )
2928eqeq1d 2445 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  k  ->  (
( A `  N
)  =  0  <->  ( A `  k )  =  0 ) )
3027, 29syl5ibcom 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( N  =  k  ->  ( A `
 k )  =  0 ) )
3130necon3d 2640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  N  =/=  k ) )
3226, 31jcad 521 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  ( k  <_  N  /\  N  =/=  k ) ) )
33 nn0re 10231 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  RR )
3433ad2antll 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  RR )
35 nnre 10008 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
3635ad2antrl 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  RR )
3734, 36ltlend 9219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  ( k  <_  N  /\  N  =/=  k
) ) )
38 nn0z 10305 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3938ad2antll 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  ZZ )
40 nnz 10304 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ZZ )
4140ad2antrl 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  ZZ )
42 zltlem1 10329 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <  N  <->  k  <_  ( N  - 
1 ) ) )
4339, 41, 42syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  k  <_  ( N  -  1 ) ) )
4437, 43bitr3d 248 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( (
k  <_  N  /\  N  =/=  k )  <->  k  <_  ( N  -  1 ) ) )
4532, 44sylibd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_ 
( N  -  1 ) ) )
4645expr 600 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( k  e.  NN0  ->  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
4746ralrimiv 2789 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) )
481coef3 20152 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4948ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A : NN0 --> CC )
50 plyco0 20112 . . . . . . . . . . . . . 14  |-  ( ( ( N  -  1 )  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5123, 49, 50syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( ( A "
( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5247, 51mpbird 225 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( A " ( ZZ>=
`  ( ( N  -  1 )  +  1 ) ) )  =  { 0 } )
531, 6dgrlb 20156 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  ( N  -  1 )  e.  NN0  /\  ( A " ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 } )  ->  N  <_  ( N  - 
1 ) )
5421, 23, 52, 53syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  <_  ( N  -  1 ) )
5535adantl 454 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
56 peano2rem 9368 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5755, 56syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
5855, 57lenltd 9220 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  <_  ( N  -  1 )  <->  -.  ( N  -  1 )  <  N ) )
5954, 58mpbid 203 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  -.  ( N  - 
1 )  <  N
)
6020, 59pm2.65da 561 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  -.  N  e.  NN )
61 dgrcl 20153 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
626, 61syl5eqel 2521 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
6362adantr 453 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  e.  NN0 )
64 elnn0 10224 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
6563, 64sylib 190 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( N  e.  NN  \/  N  =  0
) )
6665ord 368 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( -.  N  e.  NN  ->  N  = 
0 ) )
6760, 66mpd 15 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  =  0 )
6867fveq2d 5733 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  ( A `
 0 ) )
69 simpr 449 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  0 )
7017, 68, 693eqtr2d 2475 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  0 )
7170sneqd 3828 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  { ( F ` 
0 ) }  =  { 0 } )
7271xpeq2d 4903 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( CC  X.  {
( F `  0
) } )  =  ( CC  X.  {
0 } ) )
736, 67syl5eqr 2483 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
(deg `  F )  =  0 )
74 0dgrb 20166 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  <-> 
F  =  ( CC 
X.  { ( F `
 0 ) } ) ) )
7574adantr 453 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( (deg `  F
)  =  0  <->  F  =  ( CC  X.  { ( F ` 
0 ) } ) ) )
7673, 75mpbid 203 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  ( CC  X.  { ( F ` 
0 ) } ) )
77 df-0p 19563 . . . . 5  |-  0 p  =  ( CC  X.  { 0 } )
7877a1i 11 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
0 p  =  ( CC  X.  { 0 } ) )
7972, 76, 783eqtr4d 2479 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  0 p
)
8079ex 425 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  N )  =  0  ->  F  =  0 p ) )
8115, 80impbid2 197 1  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   {csn 3815   class class class wbr 4213    X. cxp 4877   "cima 4882   -->wf 5451   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    < clt 9121    <_ cle 9122    - cmin 9292   NNcn 10001   NN0cn0 10222   ZZcz 10283   ZZ>=cuz 10489   0 pc0p 19562  Polycply 20104  coeffccoe 20106  degcdgr 20107
This theorem is referenced by:  dgrlt  20185  dgradd2  20187  dgrmul  20189  dgrcolem2  20193  plymul0or  20199  plydivlem4  20214  plydiveu  20216  vieta1lem2  20229  vieta1  20230  aareccl  20244  ftalem2  20857  ftalem4  20859  ftalem5  20860  mpaaeu  27333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-pm 7022  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-fz 11045  df-fzo 11137  df-fl 11203  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-rlim 12284  df-sum 12481  df-0p 19563  df-ply 20108  df-coe 20110  df-dgr 20111
  Copyright terms: Public domain W3C validator