MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Unicode version

Theorem dgreq0 19646
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1  |-  N  =  (deg `  F )
dgreq0.2  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgreq0  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )

Proof of Theorem dgreq0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6  |-  A  =  (coeff `  F )
2 fveq2 5525 . . . . . 6  |-  ( F  =  0 p  -> 
(coeff `  F )  =  (coeff `  0 p
) )
31, 2syl5eq 2327 . . . . 5  |-  ( F  =  0 p  ->  A  =  (coeff `  0 p ) )
4 coe0 19637 . . . . 5  |-  (coeff ` 
0 p )  =  ( NN0  X.  {
0 } )
53, 4syl6eq 2331 . . . 4  |-  ( F  =  0 p  ->  A  =  ( NN0  X. 
{ 0 } ) )
6 dgreq0.1 . . . . . 6  |-  N  =  (deg `  F )
7 fveq2 5525 . . . . . 6  |-  ( F  =  0 p  -> 
(deg `  F )  =  (deg `  0 p
) )
86, 7syl5eq 2327 . . . . 5  |-  ( F  =  0 p  ->  N  =  (deg `  0 p ) )
9 dgr0 19643 . . . . 5  |-  (deg ` 
0 p )  =  0
108, 9syl6eq 2331 . . . 4  |-  ( F  =  0 p  ->  N  =  0 )
115, 10fveq12d 5531 . . 3  |-  ( F  =  0 p  -> 
( A `  N
)  =  ( ( NN0  X.  { 0 } ) `  0
) )
12 0nn0 9980 . . . 4  |-  0  e.  NN0
13 fvconst2g 5727 . . . 4  |-  ( ( 0  e.  NN0  /\  0  e.  NN0 )  -> 
( ( NN0  X.  { 0 } ) `
 0 )  =  0 )
1412, 12, 13mp2an 653 . . 3  |-  ( ( NN0  X.  { 0 } ) `  0
)  =  0
1511, 14syl6eq 2331 . 2  |-  ( F  =  0 p  -> 
( A `  N
)  =  0 )
161coefv0 19629 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
1716adantr 451 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  ( A `
 0 ) )
18 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  NN )
1918nnred 9761 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
2019ltm1d 9689 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  <  N )
21 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  F  e.  (Poly `  S ) )
22 nnm1nn0 10005 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2322adantl 452 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  NN0 )
241, 6dgrub 19616 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  N )
25243expia 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)
2625ad2ant2rl 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_  N ) )
27 simplr 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( A `  N )  =  0 )
28 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  k  ->  ( A `  N )  =  ( A `  k ) )
2928eqeq1d 2291 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  k  ->  (
( A `  N
)  =  0  <->  ( A `  k )  =  0 ) )
3027, 29syl5ibcom 211 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( N  =  k  ->  ( A `
 k )  =  0 ) )
3130necon3d 2484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  N  =/=  k ) )
3226, 31jcad 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  ( k  <_  N  /\  N  =/=  k ) ) )
33 nn0re 9974 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  RR )
3433ad2antll 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  RR )
35 nnre 9753 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
3635ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  RR )
3734, 36ltlend 8964 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  ( k  <_  N  /\  N  =/=  k
) ) )
38 nn0z 10046 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3938ad2antll 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  ZZ )
40 nnz 10045 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ZZ )
4140ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  ZZ )
42 zltlem1 10070 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <  N  <->  k  <_  ( N  - 
1 ) ) )
4339, 41, 42syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  k  <_  ( N  -  1 ) ) )
4437, 43bitr3d 246 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( (
k  <_  N  /\  N  =/=  k )  <->  k  <_  ( N  -  1 ) ) )
4532, 44sylibd 205 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_ 
( N  -  1 ) ) )
4645expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( k  e.  NN0  ->  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
4746ralrimiv 2625 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) )
481coef3 19614 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4948ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A : NN0 --> CC )
50 plyco0 19574 . . . . . . . . . . . . . 14  |-  ( ( ( N  -  1 )  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5123, 49, 50syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( ( A "
( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5247, 51mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( A " ( ZZ>=
`  ( ( N  -  1 )  +  1 ) ) )  =  { 0 } )
531, 6dgrlb 19618 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  ( N  -  1 )  e.  NN0  /\  ( A " ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 } )  ->  N  <_  ( N  - 
1 ) )
5421, 23, 52, 53syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  <_  ( N  -  1 ) )
5535adantl 452 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
56 peano2rem 9113 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5755, 56syl 15 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
5855, 57lenltd 8965 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  <_  ( N  -  1 )  <->  -.  ( N  -  1 )  <  N ) )
5954, 58mpbid 201 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  -.  ( N  - 
1 )  <  N
)
6020, 59pm2.65da 559 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  -.  N  e.  NN )
61 dgrcl 19615 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
626, 61syl5eqel 2367 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
6362adantr 451 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  e.  NN0 )
64 elnn0 9967 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
6563, 64sylib 188 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( N  e.  NN  \/  N  =  0
) )
6665ord 366 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( -.  N  e.  NN  ->  N  = 
0 ) )
6760, 66mpd 14 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  =  0 )
6867fveq2d 5529 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  ( A `
 0 ) )
69 simpr 447 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  0 )
7017, 68, 693eqtr2d 2321 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  0 )
7170sneqd 3653 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  { ( F ` 
0 ) }  =  { 0 } )
7271xpeq2d 4713 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( CC  X.  {
( F `  0
) } )  =  ( CC  X.  {
0 } ) )
736, 67syl5eqr 2329 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
(deg `  F )  =  0 )
74 0dgrb 19628 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  <-> 
F  =  ( CC 
X.  { ( F `
 0 ) } ) ) )
7574adantr 451 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( (deg `  F
)  =  0  <->  F  =  ( CC  X.  { ( F ` 
0 ) } ) ) )
7673, 75mpbid 201 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  ( CC  X.  { ( F ` 
0 ) } ) )
77 df-0p 19025 . . . . 5  |-  0 p  =  ( CC  X.  { 0 } )
7877a1i 10 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
0 p  =  ( CC  X.  { 0 } ) )
7972, 76, 783eqtr4d 2325 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  0 p
)
8079ex 423 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  N )  =  0  ->  F  =  0 p ) )
8115, 80impbid2 195 1  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0 p  <->  ( A `  N )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {csn 3640   class class class wbr 4023    X. cxp 4687   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   0 pc0p 19024  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  dgrlt  19647  dgradd2  19649  dgrmul  19651  dgrcolem2  19655  plymul0or  19661  plydivlem4  19676  plydiveu  19678  vieta1lem2  19691  vieta1  19692  aareccl  19706  ftalem2  20311  ftalem4  20313  ftalem5  20314  mpaaeu  27355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator