MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Unicode version

Theorem dgrle 20123
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrle.2  |-  ( ph  ->  N  e.  NN0 )
dgrle.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
dgrle.4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
dgrle  |-  ( ph  ->  (deg `  F )  <_  N )
Distinct variable groups:    z, A    z, k, N    ph, k, z
Allowed substitution hints:    A( k)    S( z, k)    F( z, k)

Proof of Theorem dgrle
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrle.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 dgrle.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
4 dgrle.4 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
51, 2, 3, 4coeeq2 20122 . . . . . . . . 9  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
65ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
(coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
76fveq1d 5697 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( (coeff `  F
) `  m )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
8 nfcv 2548 . . . . . . . . . 10  |-  F/_ k
m
9 nfv 1626 . . . . . . . . . . 11  |-  F/ k  -.  m  <_  N
10 nffvmpt1 5703 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )
1110nfeq1 2557 . . . . . . . . . . 11  |-  F/ k ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =  0
129, 11nfim 1828 . . . . . . . . . 10  |-  F/ k ( -.  m  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 )
13 breq1 4183 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
k  <_  N  <->  m  <_  N ) )
1413notbid 286 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( -.  k  <_  N  <->  -.  m  <_  N ) )
15 fveq2 5695 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
1615eqeq1d 2420 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =  0  <->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) )
1714, 16imbi12d 312 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( -.  k  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0 )  <->  ( -.  m  <_  N  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) ) )
18 iffalse 3714 . . . . . . . . . . . . 13  |-  ( -.  k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  0 )
1918fveq2d 5699 . . . . . . . . . . . 12  |-  ( -.  k  <_  N  ->  (  _I  `  if ( k  <_  N ,  A ,  0 ) )  =  (  _I 
`  0 ) )
20 0cn 9048 . . . . . . . . . . . . 13  |-  0  e.  CC
21 fvi 5750 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
2220, 21ax-mp 8 . . . . . . . . . . . 12  |-  (  _I 
`  0 )  =  0
2319, 22syl6eq 2460 . . . . . . . . . . 11  |-  ( -.  k  <_  N  ->  (  _I  `  if ( k  <_  N ,  A ,  0 ) )  =  0 )
24 eqid 2412 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )
2524fvmpt2i 5778 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  (  _I  `  if ( k  <_  N ,  A ,  0 ) ) )
2625eqeq1d 2420 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0  <->  (  _I  `  if ( k  <_  N ,  A , 
0 ) )  =  0 ) )
2723, 26syl5ibr 213 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( -.  k  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0 ) )
288, 12, 17, 27vtoclgaf 2984 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( -.  m  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) )
2928imp 419 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  -.  m  <_  N )  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 )
3029adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =  0 )
317, 30eqtrd 2444 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( (coeff `  F
) `  m )  =  0 )
3231ex 424 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( -.  m  <_  N  ->  (
(coeff `  F ) `  m )  =  0 ) )
3332necon1ad 2642 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
(coeff `  F ) `  m )  =/=  0  ->  m  <_  N )
)
3433ralrimiva 2757 . . 3  |-  ( ph  ->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) )
35 eqid 2412 . . . . . 6  |-  (coeff `  F )  =  (coeff `  F )
3635coef3 20112 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
371, 36syl 16 . . . 4  |-  ( ph  ->  (coeff `  F ) : NN0 --> CC )
38 plyco0 20072 . . . 4  |-  ( ( N  e.  NN0  /\  (coeff `  F ) : NN0 --> CC )  -> 
( ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) ) )
392, 37, 38syl2anc 643 . . 3  |-  ( ph  ->  ( ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) ) )
4034, 39mpbird 224 . 2  |-  ( ph  ->  ( (coeff `  F
) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 } )
41 eqid 2412 . . 3  |-  (deg `  F )  =  (deg
`  F )
4235, 41dgrlb 20116 . 2  |-  ( ( F  e.  (Poly `  S )  /\  N  e.  NN0  /\  ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )  ->  (deg `  F
)  <_  N )
431, 2, 40, 42syl3anc 1184 1  |-  ( ph  ->  (deg `  F )  <_  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   ifcif 3707   {csn 3782   class class class wbr 4180    e. cmpt 4234    _I cid 4461   "cima 4848   -->wf 5417   ` cfv 5421  (class class class)co 6048   CCcc 8952   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    <_ cle 9085   NN0cn0 10185   ZZ>=cuz 10452   ...cfz 11007   ^cexp 11345   sum_csu 12442  Polycply 20064  coeffccoe 20066  degcdgr 20067
This theorem is referenced by:  dgreq  20124  0dgr  20125  coeaddlem  20128  coemullem  20129  taylply2  20245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-fz 11008  df-fzo 11099  df-fl 11165  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-rlim 12246  df-sum 12443  df-0p 19523  df-ply 20068  df-coe 20070  df-dgr 20071
  Copyright terms: Public domain W3C validator