Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Unicode version

Theorem dgrsub2 27316
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a  |-  N  =  (deg `  F )
Assertion
Ref Expression
dgrsub2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  o F  -  G
) )  <  N
)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 964 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN )
2 dgr0 20180 . . . . 5  |-  (deg ` 
0 p )  =  0
3 nngt0 10029 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
42, 3syl5eqbr 4245 . . . 4  |-  ( N  e.  NN  ->  (deg `  0 p )  < 
N )
5 fveq2 5728 . . . . 5  |-  ( ( F  o F  -  G )  =  0 p  ->  (deg `  ( F  o F  -  G
) )  =  (deg
`  0 p ) )
65breq1d 4222 . . . 4  |-  ( ( F  o F  -  G )  =  0 p  ->  ( (deg `  ( F  o F  -  G ) )  <  N  <->  (deg `  0 p )  <  N
) )
74, 6syl5ibrcom 214 . . 3  |-  ( N  e.  NN  ->  (
( F  o F  -  G )  =  0 p  ->  (deg `  ( F  o F  -  G ) )  <  N ) )
81, 7syl 16 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  o F  -  G )  =  0 p  -> 
(deg `  ( F  o F  -  G
) )  <  N
) )
9 plyssc 20119 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
109sseli 3344 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
11 plyssc 20119 . . . . . . . 8  |-  (Poly `  T )  C_  (Poly `  CC )
1211sseli 3344 . . . . . . 7  |-  ( G  e.  (Poly `  T
)  ->  G  e.  (Poly `  CC ) )
13 eqid 2436 . . . . . . . 8  |-  (deg `  F )  =  (deg
`  F )
14 eqid 2436 . . . . . . . 8  |-  (deg `  G )  =  (deg
`  G )
1513, 14dgrsub 20190 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (deg `  ( F  o F  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1610, 12, 15syl2an 464 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (deg `  ( F  o F  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1716adantr 452 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  o F  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
18 simpr1 963 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  G )  =  N )
19 dgrsub2.a . . . . . . . . 9  |-  N  =  (deg `  F )
2019eqcomi 2440 . . . . . . . 8  |-  (deg `  F )  =  N
2120a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  F )  =  N )
2218, 21ifeq12d 3755 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  if ( (deg
`  F )  <_ 
(deg `  G ) ,  N ,  N ) )
23 ifid 3771 . . . . . 6  |-  if ( (deg `  F )  <_  (deg `  G ) ,  N ,  N )  =  N
2422, 23syl6eq 2484 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  N )
2517, 24breqtrd 4236 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  o F  -  G
) )  <_  N
)
26 eqid 2436 . . . . . . . . 9  |-  (coeff `  F )  =  (coeff `  F )
27 eqid 2436 . . . . . . . . 9  |-  (coeff `  G )  =  (coeff `  G )
2826, 27coesub 20175 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (coeff `  ( F  o F  -  G
) )  =  ( (coeff `  F )  o F  -  (coeff `  G ) ) )
2910, 12, 28syl2an 464 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (coeff `  ( F  o F  -  G
) )  =  ( (coeff `  F )  o F  -  (coeff `  G ) ) )
3029adantr 452 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  ( F  o F  -  G
) )  =  ( (coeff `  F )  o F  -  (coeff `  G ) ) )
3130fveq1d 5730 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  o F  -  G
) ) `  N
)  =  ( ( (coeff `  F )  o F  -  (coeff `  G ) ) `  N ) )
321nnnn0d 10274 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN0 )
3326coef3 20151 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
3433ad2antrr 707 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F ) : NN0 --> CC )
35 ffn 5591 . . . . . . . 8  |-  ( (coeff `  F ) : NN0 --> CC 
->  (coeff `  F )  Fn  NN0 )
3634, 35syl 16 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F )  Fn  NN0 )
3727coef3 20151 . . . . . . . . 9  |-  ( G  e.  (Poly `  T
)  ->  (coeff `  G
) : NN0 --> CC )
3837ad2antlr 708 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G ) : NN0 --> CC )
39 ffn 5591 . . . . . . . 8  |-  ( (coeff `  G ) : NN0 --> CC 
->  (coeff `  G )  Fn  NN0 )
4038, 39syl 16 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G )  Fn  NN0 )
41 nn0ex 10227 . . . . . . . 8  |-  NN0  e.  _V
4241a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  NN0  e.  _V )
43 inidm 3550 . . . . . . 7  |-  ( NN0 
i^i  NN0 )  =  NN0
44 simplr3 1001 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) )
45 eqidd 2437 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  G
) `  N )  =  ( (coeff `  G ) `  N
) )
4636, 40, 42, 42, 43, 44, 45ofval 6314 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( ( (coeff `  F )  o F  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4732, 46mpdan 650 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  F )  o F  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4838, 32ffvelrnd 5871 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  G
) `  N )  e.  CC )
4948subidd 9399 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  G ) `  N
)  -  ( (coeff `  G ) `  N
) )  =  0 )
5031, 47, 493eqtrd 2472 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  o F  -  G
) ) `  N
)  =  0 )
51 plysubcl 20141 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  ( F  o F  -  G
)  e.  (Poly `  CC ) )
5210, 12, 51syl2an 464 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  ( F  o F  -  G
)  e.  (Poly `  CC ) )
5352adantr 452 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( F  o F  -  G )  e.  (Poly `  CC )
)
54 eqid 2436 . . . . . 6  |-  (deg `  ( F  o F  -  G ) )  =  (deg `  ( F  o F  -  G
) )
55 eqid 2436 . . . . . 6  |-  (coeff `  ( F  o F  -  G ) )  =  (coeff `  ( F  o F  -  G
) )
5654, 55dgrlt 20184 . . . . 5  |-  ( ( ( F  o F  -  G )  e.  (Poly `  CC )  /\  N  e.  NN0 )  ->  ( ( ( F  o F  -  G )  =  0 p  \/  (deg `  ( F  o F  -  G ) )  < 
N )  <->  ( (deg `  ( F  o F  -  G ) )  <_  N  /\  (
(coeff `  ( F  o F  -  G
) ) `  N
)  =  0 ) ) )
5753, 32, 56syl2anc 643 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( ( F  o F  -  G
)  =  0 p  \/  (deg `  ( F  o F  -  G
) )  <  N
)  <->  ( (deg `  ( F  o F  -  G ) )  <_  N  /\  ( (coeff `  ( F  o F  -  G ) ) `  N )  =  0 ) ) )
5825, 50, 57mpbir2and 889 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  o F  -  G )  =  0 p  \/  (deg `  ( F  o F  -  G )
)  <  N )
)
5958ord 367 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( -.  ( F  o F  -  G
)  =  0 p  ->  (deg `  ( F  o F  -  G
) )  <  N
) )
608, 59pm2.61d 152 1  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  o F  -  G
) )  <  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2956   ifcif 3739   class class class wbr 4212    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081    o Fcof 6303   CCcc 8988   0cc0 8990    < clt 9120    <_ cle 9121    - cmin 9291   NNcn 10000   NN0cn0 10221   0 pc0p 19561  Polycply 20103  coeffccoe 20105  degcdgr 20106
This theorem is referenced by:  mpaaeu  27332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-sum 12480  df-0p 19562  df-ply 20107  df-coe 20109  df-dgr 20110
  Copyright terms: Public domain W3C validator