Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dim Unicode version

Theorem dia1dim 31069
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when  F is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dia1dim.h  |-  H  =  ( LHyp `  K
)
dia1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dia1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dia1dim.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
dia1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Distinct variable groups:    E, s    g, s, F    g, H, s    g, K, s    R, g, s    T, g, s   
g, W, s
Allowed substitution hints:    E( g)    I(
g, s)

Proof of Theorem dia1dim
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2316 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 dia1dim.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dia1dim.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 dia1dim.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 30171 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
7 eqid 2316 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 30191 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dia1dim.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
102, 7, 3, 4, 5, 9diaval 31040 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  ( Base `  K
)  /\  ( R `  F ) ( le
`  K ) W ) )  ->  (
I `  ( R `  F ) )  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
111, 6, 8, 10syl12anc 1180 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  T  | 
( R `  g
) ( le `  K ) ( R `
 F ) } )
12 dia1dim.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
137, 3, 4, 5, 12dva1dim 30992 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
1411, 13eqtr4d 2351 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   {cab 2302   E.wrex 2578   {crab 2581   class class class wbr 4060   ` cfv 5292   Basecbs 13195   lecple 13262   HLchlt 29358   LHypclh 29991   LTrncltrn 30108   trLctrl 30165   TEndoctendo 30759   DIsoAcdia 31036
This theorem is referenced by:  dia1dim2  31070  dib1dim  31173
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-map 6817  df-poset 14129  df-plt 14141  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-p0 14194  df-p1 14195  df-lat 14201  df-clat 14263  df-oposet 29184  df-ol 29186  df-oml 29187  df-covers 29274  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359  df-llines 29505  df-lplanes 29506  df-lvols 29507  df-lines 29508  df-psubsp 29510  df-pmap 29511  df-padd 29803  df-lhyp 29995  df-laut 29996  df-ldil 30111  df-ltrn 30112  df-trl 30166  df-tendo 30762  df-disoa 31037
  Copyright terms: Public domain W3C validator