Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diacnvclN Unicode version

Theorem diacnvclN 31534
Description: Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1o.h  |-  H  =  ( LHyp `  K
)
dia1o.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diacnvclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  ( `' I `  X )  e.  dom  I )

Proof of Theorem diacnvclN
StepHypRef Expression
1 dia1o.h . . 3  |-  H  =  ( LHyp `  K
)
2 dia1o.i . . 3  |-  I  =  ( ( DIsoA `  K
) `  W )
31, 2diaf11N 31532 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
4 f1ocnvdm 5977 . 2  |-  ( ( I : dom  I -1-1-onto-> ran  I  /\  X  e.  ran  I )  ->  ( `' I `  X )  e.  dom  I )
53, 4sylan 458 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  ( `' I `  X )  e.  dom  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   `'ccnv 4836   dom cdm 4837   ran crn 4838   -1-1-onto->wf1o 5412   ` cfv 5413   HLchlt 29833   LHypclh 30466   DIsoAcdia 31511
This theorem is referenced by:  diainN  31540  diasslssN  31542  docaclN  31607  doca3N  31610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-disoa 31512
  Copyright terms: Public domain W3C validator