Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafval Structured version   Unicode version

Theorem diafval 31766
Description: The partial isomorphism A for a lattice  K. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b  |-  B  =  ( Base `  K
)
diaval.l  |-  .<_  =  ( le `  K )
diaval.h  |-  H  =  ( LHyp `  K
)
diaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
diaval.r  |-  R  =  ( ( trL `  K
) `  W )
diaval.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diafval  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) )
Distinct variable groups:    x, y,  .<_    x, B, y    x, f, y, K    x, R    T, f, x    f, W, x, y
Allowed substitution hints:    B( f)    R( y, f)    T( y)    H( x, y, f)    I( x, y, f)    .<_ ( f)    V( x, y, f)

Proof of Theorem diafval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 diaval.i . . 3  |-  I  =  ( ( DIsoA `  K
) `  W )
2 diaval.b . . . . 5  |-  B  =  ( Base `  K
)
3 diaval.l . . . . 5  |-  .<_  =  ( le `  K )
4 diaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4diaffval 31765 . . . 4  |-  ( K  e.  V  ->  ( DIsoA `  K )  =  ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) )
65fveq1d 5722 . . 3  |-  ( K  e.  V  ->  (
( DIsoA `  K ) `  W )  =  ( ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) `  W
) )
71, 6syl5eq 2479 . 2  |-  ( K  e.  V  ->  I  =  ( ( w  e.  H  |->  ( x  e.  { y  e.  B  |  y  .<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) `  W
) )
8 breq2 4208 . . . . 5  |-  ( w  =  W  ->  (
y  .<_  w  <->  y  .<_  W ) )
98rabbidv 2940 . . . 4  |-  ( w  =  W  ->  { y  e.  B  |  y 
.<_  w }  =  {
y  e.  B  | 
y  .<_  W } )
10 fveq2 5720 . . . . . 6  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
11 diaval.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
1210, 11syl6eqr 2485 . . . . 5  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
13 fveq2 5720 . . . . . . . 8  |-  ( w  =  W  ->  (
( trL `  K
) `  w )  =  ( ( trL `  K ) `  W
) )
14 diaval.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
1513, 14syl6eqr 2485 . . . . . . 7  |-  ( w  =  W  ->  (
( trL `  K
) `  w )  =  R )
1615fveq1d 5722 . . . . . 6  |-  ( w  =  W  ->  (
( ( trL `  K
) `  w ) `  f )  =  ( R `  f ) )
1716breq1d 4214 . . . . 5  |-  ( w  =  W  ->  (
( ( ( trL `  K ) `  w
) `  f )  .<_  x  <->  ( R `  f )  .<_  x ) )
1812, 17rabeqbidv 2943 . . . 4  |-  ( w  =  W  ->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }  =  { f  e.  T  |  ( R `  f )  .<_  x }
)
199, 18mpteq12dv 4279 . . 3  |-  ( w  =  W  ->  (
x  e.  { y  e.  B  |  y 
.<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
)  =  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) )
20 eqid 2435 . . 3  |-  ( w  e.  H  |->  ( x  e.  { y  e.  B  |  y  .<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) )  =  ( w  e.  H  |->  ( x  e.  { y  e.  B  |  y 
.<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) )
21 fvex 5734 . . . . . 6  |-  ( Base `  K )  e.  _V
222, 21eqeltri 2505 . . . . 5  |-  B  e. 
_V
2322rabex 4346 . . . 4  |-  { y  e.  B  |  y 
.<_  W }  e.  _V
2423mptex 5958 . . 3  |-  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } )  e. 
_V
2519, 20, 24fvmpt 5798 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) `  W
)  =  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) )
267, 25sylan9eq 2487 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   ` cfv 5446   Basecbs 13461   lecple 13528   LHypclh 30718   LTrncltrn 30835   trLctrl 30892   DIsoAcdia 31763
This theorem is referenced by:  diaval  31767  diafn  31769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-disoa 31764
  Copyright terms: Public domain W3C validator