MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag12 Structured version   Unicode version

Theorem diag12 14343
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l  |-  L  =  ( CΔfunc D )
diagval.c  |-  ( ph  ->  C  e.  Cat )
diagval.d  |-  ( ph  ->  D  e.  Cat )
diag11.a  |-  A  =  ( Base `  C
)
diag11.c  |-  ( ph  ->  X  e.  A )
diag11.k  |-  K  =  ( ( 1st `  L
) `  X )
diag11.b  |-  B  =  ( Base `  D
)
diag11.y  |-  ( ph  ->  Y  e.  B )
diag12.j  |-  J  =  (  Hom  `  D
)
diag12.i  |-  .1.  =  ( Id `  C )
diag12.z  |-  ( ph  ->  Z  e.  B )
diag12.f  |-  ( ph  ->  F  e.  ( Y J Z ) )
Assertion
Ref Expression
diag12  |-  ( ph  ->  ( ( Y ( 2nd `  K ) Z ) `  F
)  =  (  .1.  `  X ) )

Proof of Theorem diag12
StepHypRef Expression
1 diag11.k . . . . . 6  |-  K  =  ( ( 1st `  L
) `  X )
2 diagval.l . . . . . . . . 9  |-  L  =  ( CΔfunc D )
3 diagval.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
4 diagval.d . . . . . . . . 9  |-  ( ph  ->  D  e.  Cat )
52, 3, 4diagval 14339 . . . . . . . 8  |-  ( ph  ->  L  =  ( <. C ,  D >. curryF  ( C  1stF  D ) ) )
65fveq2d 5734 . . . . . . 7  |-  ( ph  ->  ( 1st `  L
)  =  ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) )
76fveq1d 5732 . . . . . 6  |-  ( ph  ->  ( ( 1st `  L
) `  X )  =  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) )
81, 7syl5eq 2482 . . . . 5  |-  ( ph  ->  K  =  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) )
98fveq2d 5734 . . . 4  |-  ( ph  ->  ( 2nd `  K
)  =  ( 2nd `  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) ) )
109oveqd 6100 . . 3  |-  ( ph  ->  ( Y ( 2nd `  K ) Z )  =  ( Y ( 2nd `  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) ) Z ) )
1110fveq1d 5732 . 2  |-  ( ph  ->  ( ( Y ( 2nd `  K ) Z ) `  F
)  =  ( ( Y ( 2nd `  (
( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) ) Z ) `  F
) )
12 eqid 2438 . . 3  |-  ( <. C ,  D >. curryF  ( C  1stF  D ) )  =  ( <. C ,  D >. curryF  ( C  1stF  D ) )
13 diag11.a . . 3  |-  A  =  ( Base `  C
)
14 eqid 2438 . . . 4  |-  ( C  X.c  D )  =  ( C  X.c  D )
15 eqid 2438 . . . 4  |-  ( C  1stF  D )  =  ( C  1stF  D )
1614, 3, 4, 151stfcl 14296 . . 3  |-  ( ph  ->  ( C  1stF  D )  e.  ( ( C  X.c  D
)  Func  C )
)
17 diag11.b . . 3  |-  B  =  ( Base `  D
)
18 diag11.c . . 3  |-  ( ph  ->  X  e.  A )
19 eqid 2438 . . 3  |-  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X )  =  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X )
20 diag11.y . . 3  |-  ( ph  ->  Y  e.  B )
21 diag12.j . . 3  |-  J  =  (  Hom  `  D
)
22 diag12.i . . 3  |-  .1.  =  ( Id `  C )
23 diag12.z . . 3  |-  ( ph  ->  Z  e.  B )
24 diag12.f . . 3  |-  ( ph  ->  F  e.  ( Y J Z ) )
2512, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24curf12 14326 . 2  |-  ( ph  ->  ( ( Y ( 2nd `  ( ( 1st `  ( <. C ,  D >. curryF  ( C  1stF  D ) ) ) `
 X ) ) Z ) `  F
)  =  ( (  .1.  `  X )
( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) F ) )
26 df-ov 6086 . . . 4  |-  ( (  .1.  `  X )
( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) F )  =  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) `
 <. (  .1.  `  X ) ,  F >. )
2714, 13, 17xpcbas 14277 . . . . . 6  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
28 eqid 2438 . . . . . 6  |-  (  Hom  `  ( C  X.c  D ) )  =  (  Hom  `  ( C  X.c  D ) )
29 opelxpi 4912 . . . . . . 7  |-  ( ( X  e.  A  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
3018, 20, 29syl2anc 644 . . . . . 6  |-  ( ph  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
31 opelxpi 4912 . . . . . . 7  |-  ( ( X  e.  A  /\  Z  e.  B )  -> 
<. X ,  Z >.  e.  ( A  X.  B
) )
3218, 23, 31syl2anc 644 . . . . . 6  |-  ( ph  -> 
<. X ,  Z >.  e.  ( A  X.  B
) )
3314, 27, 28, 3, 4, 15, 30, 321stf2 14292 . . . . 5  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. )  =  ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. ) ) )
3433fveq1d 5732 . . . 4  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) `
 <. (  .1.  `  X ) ,  F >. )  =  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D
) ) <. X ,  Z >. ) ) `  <. (  .1.  `  X
) ,  F >. ) )
3526, 34syl5eq 2482 . . 3  |-  ( ph  ->  ( (  .1.  `  X ) ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) F )  =  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. ) ) `  <. (  .1.  `  X ) ,  F >. ) )
36 eqid 2438 . . . . . . 7  |-  (  Hom  `  C )  =  (  Hom  `  C )
3713, 36, 22, 3, 18catidcl 13909 . . . . . 6  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X (  Hom  `  C
) X ) )
38 opelxpi 4912 . . . . . 6  |-  ( ( (  .1.  `  X
)  e.  ( X (  Hom  `  C
) X )  /\  F  e.  ( Y J Z ) )  ->  <. (  .1.  `  X
) ,  F >.  e.  ( ( X (  Hom  `  C ) X )  X.  ( Y J Z ) ) )
3937, 24, 38syl2anc 644 . . . . 5  |-  ( ph  -> 
<. (  .1.  `  X
) ,  F >.  e.  ( ( X (  Hom  `  C ) X )  X.  ( Y J Z ) ) )
4014, 13, 17, 36, 21, 18, 20, 18, 23, 28xpchom2 14285 . . . . 5  |-  ( ph  ->  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. )  =  ( ( X (  Hom  `  C
) X )  X.  ( Y J Z ) ) )
4139, 40eleqtrrd 2515 . . . 4  |-  ( ph  -> 
<. (  .1.  `  X
) ,  F >.  e.  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. ) )
42 fvres 5747 . . . 4  |-  ( <.
(  .1.  `  X
) ,  F >.  e.  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. )  ->  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. ) ) `  <. (  .1.  `  X ) ,  F >. )  =  ( 1st `  <. (  .1.  `  X ) ,  F >. ) )
4341, 42syl 16 . . 3  |-  ( ph  ->  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. X ,  Z >. ) ) `  <. (  .1.  `  X ) ,  F >. )  =  ( 1st `  <. (  .1.  `  X ) ,  F >. ) )
44 op1stg 6361 . . . 4  |-  ( ( (  .1.  `  X
)  e.  ( X (  Hom  `  C
) X )  /\  F  e.  ( Y J Z ) )  -> 
( 1st `  <. (  .1.  `  X ) ,  F >. )  =  (  .1.  `  X )
)
4537, 24, 44syl2anc 644 . . 3  |-  ( ph  ->  ( 1st `  <. (  .1.  `  X ) ,  F >. )  =  (  .1.  `  X )
)
4635, 43, 453eqtrd 2474 . 2  |-  ( ph  ->  ( (  .1.  `  X ) ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. X ,  Z >. ) F )  =  (  .1.  `  X )
)
4711, 25, 463eqtrd 2474 1  |-  ( ph  ->  ( ( Y ( 2nd `  K ) Z ) `  F
)  =  (  .1.  `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   <.cop 3819    X. cxp 4878    |` cres 4882   ` cfv 5456  (class class class)co 6083   1stc1st 6349   2ndc2nd 6350   Basecbs 13471    Hom chom 13542   Catccat 13891   Idccid 13892    X.c cxpc 14267    1stF c1stf 14268   curryF ccurf 14309  Δfunccdiag 14311
This theorem is referenced by:  curf2ndf  14346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-hom 13555  df-cco 13556  df-cat 13895  df-cid 13896  df-func 14057  df-xpc 14271  df-1stf 14272  df-curf 14313  df-diag 14315
  Copyright terms: Public domain W3C validator