Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaintclN Unicode version

Theorem diaintclN 31870
Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaintcl.h  |-  H  =  ( LHyp `  K
)
diaintcl.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaintclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )

Proof of Theorem diaintclN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaintcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2 diaintcl.i . . . . . . . 8  |-  I  =  ( ( DIsoA `  K
) `  W )
31, 2diaf11N 31861 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
43adantr 451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -1-1-onto-> ran  I )
5 f1ofn 5489 . . . . . 6  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I  Fn  dom  I
)
64, 5syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
7 cnvimass 5049 . . . . 5  |-  ( `' I " S ) 
C_  dom  I
8 fnssres 5373 . . . . 5  |-  ( ( I  Fn  dom  I  /\  ( `' I " S )  C_  dom  I )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
96, 7, 8sylancl 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
10 fniinfv 5597 . . . 4  |-  ( ( I  |`  ( `' I " S ) )  Fn  ( `' I " S )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
119, 10syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
12 df-ima 4718 . . . . 5  |-  ( I
" ( `' I " S ) )  =  ran  ( I  |`  ( `' I " S ) )
13 f1ofo 5495 . . . . . . . 8  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I : dom  I -onto-> ran  I )
143, 13syl 15 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -onto-> ran  I )
1514adantr 451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -onto-> ran  I
)
16 simprl 732 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  C_ 
ran  I )
17 foimacnv 5506 . . . . . 6  |-  ( ( I : dom  I -onto-> ran  I  /\  S  C_  ran  I )  ->  (
I " ( `' I " S ) )  =  S )
1815, 16, 17syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I " ( `' I " S ) )  =  S )
1912, 18syl5eqr 2342 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ran  ( I  |`  ( `' I " S ) )  =  S )
2019inteqd 3883 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| ran  ( I  |`  ( `' I " S ) )  =  |^| S
)
2111, 20eqtrd 2328 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| S )
22 simpl 443 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
237a1i 10 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  dom  I )
24 simprr 733 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
25 n0 3477 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. y  y  e.  S )
2624, 25sylib 188 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  S )
2716sselda 3193 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  y  e.  ran  I
)
283ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I : dom  I -1-1-onto-> ran  I )
2928, 5syl 15 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I  Fn  dom  I
)
30 fvelrnb 5586 . . . . . . . . . . 11  |-  ( I  Fn  dom  I  -> 
( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3129, 30syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3227, 31mpbid 201 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  E. x  e.  dom  I ( I `  x )  =  y )
33 f1ofun 5490 . . . . . . . . . . . . . . . . . 18  |-  ( I : dom  I -1-1-onto-> ran  I  ->  Fun  I )
343, 33syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Fun  I )
3534adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  Fun  I )
36 fvimacnv 5656 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  I  /\  x  e.  dom  I )  -> 
( ( I `  x )  e.  S  <->  x  e.  ( `' I " S ) ) )
3735, 36sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  <->  x  e.  ( `' I " S ) ) )
38 ne0i 3474 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( `' I " S )  ->  ( `' I " S )  =/=  (/) )
3937, 38syl6bi 219 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  ->  ( `' I " S )  =/=  (/) ) )
4039ex 423 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
x  e.  dom  I  ->  ( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
41 eleq1 2356 . . . . . . . . . . . . . . 15  |-  ( ( I `  x )  =  y  ->  (
( I `  x
)  e.  S  <->  y  e.  S ) )
4241biimprd 214 . . . . . . . . . . . . . 14  |-  ( ( I `  x )  =  y  ->  (
y  e.  S  -> 
( I `  x
)  e.  S ) )
4342imim1d 69 . . . . . . . . . . . . 13  |-  ( ( I `  x )  =  y  ->  (
( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) )  -> 
( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
4440, 43syl9 66 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( I `  x
)  =  y  -> 
( x  e.  dom  I  ->  ( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) ) )
4544com24 81 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) ) )
4645imp 418 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) )
4746rexlimdv 2679 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( E. x  e. 
dom  I ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) )
4832, 47mpd 14 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( `' I " S )  =/=  (/) )
4948ex 423 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( `' I " S )  =/=  (/) ) )
5049exlimdv 1626 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( E. y  y  e.  S  ->  ( `' I " S )  =/=  (/) ) )
5126, 50mpd 14 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S )  =/=  (/) )
52 eqid 2296 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
5352, 1, 2diaglbN 31867 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( `' I " S ) 
C_  dom  I  /\  ( `' I " S )  =/=  (/) ) )  -> 
( I `  (
( glb `  K
) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `
 y ) )
5422, 23, 51, 53syl12anc 1180 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
55 fvres 5558 . . . . 5  |-  ( y  e.  ( `' I " S )  ->  (
( I  |`  ( `' I " S ) ) `  y )  =  ( I `  y ) )
5655iineq2i 3940 . . . 4  |-  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^|_ y  e.  ( `' I " S ) ( I `  y
)
5754, 56syl6eqr 2346 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `  y ) )
58 hlclat 30170 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
5958ad2antrr 706 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
60 eqid 2296 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
61 eqid 2296 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6260, 61, 1, 2diadm 31847 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
x  e.  ( Base `  K )  |  x ( le `  K
) W } )
63 ssrab2 3271 . . . . . . . . . 10  |-  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  C_  ( Base `  K )
6463a1i 10 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  { x  e.  (
Base `  K )  |  x ( le `  K ) W }  C_  ( Base `  K
) )
6562, 64eqsstrd 3225 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  C_  ( Base `  K ) )
6665adantr 451 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  C_  ( Base `  K
) )
677, 66syl5ss 3203 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
6860, 52clatglbcl 14234 . . . . . 6  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
6959, 67, 68syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
70 n0 3477 . . . . . . 7  |-  ( ( `' I " S )  =/=  (/)  <->  E. y  y  e.  ( `' I " S ) )
7151, 70sylib 188 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  ( `' I " S ) )
72 hllat 30175 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
7372ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  Lat )
7469adantr 451 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) )  e.  ( Base `  K ) )
7567sselda 3193 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  (
Base `  K )
)
76 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  W  e.  H
)
7760, 1lhpbase 30809 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7876, 77syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  W  e.  (
Base `  K )
)
7958ad3antrrr 710 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  CLat )
8062adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  =  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
817, 80syl5sseq 3239 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
8281, 63syl6ss 3204 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
8382adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( `' I " S )  C_  ( Base `  K ) )
84 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  ( `' I " S ) )
8560, 61, 52clatglble 14245 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
)  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
8679, 83, 84, 85syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
877sseli 3189 . . . . . . . . . . . 12  |-  ( y  e.  ( `' I " S )  ->  y  e.  dom  I )
8887adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  dom  I )
8960, 61, 1, 2diaeldm 31848 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
9089ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e. 
dom  I  <->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) ) )
9188, 90mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )
9291simprd 449 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y ( le
`  K ) W )
9360, 61, 73, 74, 75, 78, 86, 92lattrd 14180 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W )
9493ex 423 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  ( `' I " S )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) )
9594exlimdv 1626 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( E. y  y  e.  ( `' I " S )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) )
9671, 95mpd 14 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) ) ( le `  K
) W )
9760, 61, 1, 2diaeldm 31848 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I  <->  ( ( ( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9897adantr 451 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( ( glb `  K
) `  ( `' I " S ) )  e.  dom  I  <->  ( (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9969, 96, 98mpbir2and 888 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  dom  I )
1001, 2diaclN 31862 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I
)  ->  ( I `  ( ( glb `  K
) `  ( `' I " S ) ) )  e.  ran  I
)
10199, 100syldan 456 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  e.  ran  I )
10257, 101eqeltrrd 2371 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  e. 
ran  I )
10321, 102eqeltrrd 2371 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560    C_ wss 3165   (/)c0 3468   |^|cint 3878   |^|_ciin 3922   class class class wbr 4039   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271   Basecbs 13164   lecple 13231   glbcglb 14093   Latclat 14167   CLatccla 14229   HLchlt 30162   LHypclh 30795   DIsoAcdia 31840
This theorem is referenced by:  docaclN  31936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-disoa 31841
  Copyright terms: Public domain W3C validator