Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaocN Unicode version

Theorem diaocN 31937
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom  W). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaoc.j  |-  .\/  =  ( join `  K )
diaoc.m  |-  ./\  =  ( meet `  K )
diaoc.o  |-  ._|_  =  ( oc `  K )
diaoc.h  |-  H  =  ( LHyp `  K
)
diaoc.t  |-  T  =  ( ( LTrn `  K
) `  W )
diaoc.i  |-  I  =  ( ( DIsoA `  K
) `  W )
diaoc.n  |-  N  =  ( ( ocA `  K
) `  W )
Assertion
Ref Expression
diaocN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  X )  .\/  (  ._|_  `  W
) )  ./\  W
) )  =  ( N `  ( I `
 X ) ) )

Proof of Theorem diaocN
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2296 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
3 diaoc.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 diaoc.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
52, 3, 4diadmclN 31849 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X  e.  ( Base `  K
) )
6 eqid 2296 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
76, 3, 4diadmleN 31850 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X
( le `  K
) W )
8 diaoc.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
92, 6, 3, 8, 4diass 31854 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  ( Base `  K
)  /\  X ( le `  K ) W ) )  ->  (
I `  X )  C_  T )
101, 5, 7, 9syl12anc 1180 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  C_  T )
11 diaoc.j . . . 4  |-  .\/  =  ( join `  K )
12 diaoc.m . . . 4  |-  ./\  =  ( meet `  K )
13 diaoc.o . . . 4  |-  ._|_  =  ( oc `  K )
14 diaoc.n . . . 4  |-  N  =  ( ( ocA `  K
) `  W )
1511, 12, 13, 3, 8, 4, 14docavalN 31935 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  C_  T
)  ->  ( N `  ( I `  X
) )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
1610, 15syldan 456 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( N `  ( I `  X ) )  =  ( I `  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
173, 4diaclN 31862 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  e.  ran  I )
18 intmin 3898 . . . . . . . . 9  |-  ( ( I `  X )  e.  ran  I  ->  |^| { z  e.  ran  I  |  ( I `  X )  C_  z }  =  ( I `  X ) )
1917, 18syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }  =  ( I `  X ) )
2019fveq2d 5545 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
)  =  ( `' I `  ( I `
 X ) ) )
213, 4diaf11N 31861 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
22 f1ocnvfv1 5808 . . . . . . . 8  |-  ( ( I : dom  I -1-1-onto-> ran  I  /\  X  e.  dom  I )  ->  ( `' I `  ( I `
 X ) )  =  X )
2321, 22sylan 457 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  ( I `
 X ) )  =  X )
2420, 23eqtrd 2328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
)  =  X )
2524fveq2d 5545 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (  ._|_  `  ( `' I `  |^| { z  e. 
ran  I  |  ( I `  X ) 
C_  z } ) )  =  (  ._|_  `  X ) )
2625oveq1d 5889 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) )  =  ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) )
2726oveq1d 5889 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W )  =  ( ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) 
./\  W ) )
2827fveq2d 5545 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) )  =  ( I `  ( ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
2916, 28eqtr2d 2329 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  X )  .\/  (  ._|_  `  W
) )  ./\  W
) )  =  ( N `  ( I `
 X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   |^|cint 3878   class class class wbr 4039   `'ccnv 4704   dom cdm 4705   ran crn 4706   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   occoc 13232   joincjn 14094   meetcmee 14095   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   DIsoAcdia 31840   ocAcocaN 31931
This theorem is referenced by:  doca2N  31938  djajN  31949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-disoa 31841  df-docaN 31932
  Copyright terms: Public domain W3C validator