Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaocN Structured version   Unicode version

Theorem diaocN 31923
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom  W). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaoc.j  |-  .\/  =  ( join `  K )
diaoc.m  |-  ./\  =  ( meet `  K )
diaoc.o  |-  ._|_  =  ( oc `  K )
diaoc.h  |-  H  =  ( LHyp `  K
)
diaoc.t  |-  T  =  ( ( LTrn `  K
) `  W )
diaoc.i  |-  I  =  ( ( DIsoA `  K
) `  W )
diaoc.n  |-  N  =  ( ( ocA `  K
) `  W )
Assertion
Ref Expression
diaocN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  X )  .\/  (  ._|_  `  W
) )  ./\  W
) )  =  ( N `  ( I `
 X ) ) )

Proof of Theorem diaocN
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2436 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
3 diaoc.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 diaoc.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
52, 3, 4diadmclN 31835 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X  e.  ( Base `  K
) )
6 eqid 2436 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
76, 3, 4diadmleN 31836 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X
( le `  K
) W )
8 diaoc.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
92, 6, 3, 8, 4diass 31840 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  ( Base `  K
)  /\  X ( le `  K ) W ) )  ->  (
I `  X )  C_  T )
101, 5, 7, 9syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  C_  T )
11 diaoc.j . . . 4  |-  .\/  =  ( join `  K )
12 diaoc.m . . . 4  |-  ./\  =  ( meet `  K )
13 diaoc.o . . . 4  |-  ._|_  =  ( oc `  K )
14 diaoc.n . . . 4  |-  N  =  ( ( ocA `  K
) `  W )
1511, 12, 13, 3, 8, 4, 14docavalN 31921 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  C_  T
)  ->  ( N `  ( I `  X
) )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
1610, 15syldan 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( N `  ( I `  X ) )  =  ( I `  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
173, 4diaclN 31848 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  e.  ran  I )
18 intmin 4070 . . . . . . . . 9  |-  ( ( I `  X )  e.  ran  I  ->  |^| { z  e.  ran  I  |  ( I `  X )  C_  z }  =  ( I `  X ) )
1917, 18syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }  =  ( I `  X ) )
2019fveq2d 5732 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
)  =  ( `' I `  ( I `
 X ) ) )
213, 4diaf11N 31847 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
22 f1ocnvfv1 6014 . . . . . . . 8  |-  ( ( I : dom  I -1-1-onto-> ran  I  /\  X  e.  dom  I )  ->  ( `' I `  ( I `
 X ) )  =  X )
2321, 22sylan 458 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  ( I `
 X ) )  =  X )
2420, 23eqtrd 2468 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
)  =  X )
2524fveq2d 5732 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (  ._|_  `  ( `' I `  |^| { z  e. 
ran  I  |  ( I `  X ) 
C_  z } ) )  =  (  ._|_  `  X ) )
2625oveq1d 6096 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) )  =  ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) )
2726oveq1d 6096 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W )  =  ( ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) 
./\  W ) )
2827fveq2d 5732 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  ( I `  X
)  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) )  =  ( I `  ( ( (  ._|_  `  X )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
2916, 28eqtr2d 2469 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
(  ._|_  `  X )  .\/  (  ._|_  `  W
) )  ./\  W
) )  =  ( N `  ( I `
 X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709    C_ wss 3320   |^|cint 4050   class class class wbr 4212   `'ccnv 4877   dom cdm 4878   ran crn 4879   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   occoc 13537   joincjn 14401   meetcmee 14402   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   DIsoAcdia 31826   ocAcocaN 31917
This theorem is referenced by:  doca2N  31924  djajN  31935
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956  df-disoa 31827  df-docaN 31918
  Copyright terms: Public domain W3C validator