Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diass Unicode version

Theorem diass 31232
Description: The value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diass.b  |-  B  =  ( Base `  K
)
diass.l  |-  .<_  =  ( le `  K )
diass.h  |-  H  =  ( LHyp `  K
)
diass.t  |-  T  =  ( ( LTrn `  K
) `  W )
diass.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diass  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  C_  T )

Proof of Theorem diass
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 diass.b . . 3  |-  B  =  ( Base `  K
)
2 diass.l . . 3  |-  .<_  =  ( le `  K )
3 diass.h . . 3  |-  H  =  ( LHyp `  K
)
4 diass.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
5 eqid 2283 . . 3  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
6 diass.i . . 3  |-  I  =  ( ( DIsoA `  K
) `  W )
71, 2, 3, 4, 5, 6diaval 31222 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  { f  e.  T  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  X }
)
8 ssrab2 3258 . . 3  |-  { f  e.  T  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  X }  C_  T
98a1i 10 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  { f  e.  T  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  X }  C_  T )
107, 9eqsstrd 3212 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  C_  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   DIsoAcdia 31218
This theorem is referenced by:  diael  31233  diaelrnN  31235  dialss  31236  dia2dimlem12  31265  diaocN  31315  dibss  31359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-disoa 31219
  Copyright terms: Public domain W3C validator