Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib0 Unicode version

Theorem dib0 31330
Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.)
Hypotheses
Ref Expression
dib0.z  |-  .0.  =  ( 0. `  K )
dib0.h  |-  H  =  ( LHyp `  K
)
dib0.i  |-  I  =  ( ( DIsoB `  K
) `  W )
dib0.u  |-  U  =  ( ( DVecH `  K
) `  W )
dib0.o  |-  O  =  ( 0g `  U
)
Assertion
Ref Expression
dib0  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .0.  )  =  { O } )

Proof of Theorem dib0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fvex 5675 . . . 4  |-  ( Base `  K )  e.  _V
2 resiexg 5121 . . . 4  |-  ( (
Base `  K )  e.  _V  ->  (  _I  |`  ( Base `  K
) )  e.  _V )
31, 2ax-mp 8 . . 3  |-  (  _I  |`  ( Base `  K
) )  e.  _V
4 fvex 5675 . . . 4  |-  ( (
LTrn `  K ) `  W )  e.  _V
54mptex 5898 . . 3  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  e.  _V
63, 5xpsn 5842 . 2  |-  ( { (  _I  |`  ( Base `  K ) ) }  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } )  =  { <. (  _I  |`  ( Base `  K ) ) ,  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) >. }
7 id 20 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 hlop 29528 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
98adantr 452 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  K  e.  OP )
10 eqid 2380 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
11 dib0.z . . . . . 6  |-  .0.  =  ( 0. `  K )
1210, 11op0cl 29350 . . . . 5  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
139, 12syl 16 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  ( Base `  K ) )
14 dib0.h . . . . . 6  |-  H  =  ( LHyp `  K
)
1510, 14lhpbase 30163 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
16 eqid 2380 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
1710, 16, 11op0le 29352 . . . . 5  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  ->  .0.  ( le `  K
) W )
188, 15, 17syl2an 464 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  ( le `  K ) W )
19 eqid 2380 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
20 eqid 2380 . . . . 5  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
21 eqid 2380 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
22 dib0.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
2310, 16, 14, 19, 20, 21, 22dibval2 31310 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  .0.  e.  ( Base `  K )  /\  .0.  ( le `  K ) W ) )  ->  ( I `  .0.  )  =  ( ( ( ( DIsoA `  K ) `  W
) `  .0.  )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
247, 13, 18, 23syl12anc 1182 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .0.  )  =  ( (
( ( DIsoA `  K
) `  W ) `  .0.  )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
2510, 11, 14, 21dia0 31218 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( DIsoA `  K ) `  W
) `  .0.  )  =  { (  _I  |`  ( Base `  K ) ) } )
2625xpeq1d 4834 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( (
DIsoA `  K ) `  W ) `  .0.  )  X.  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) ) } )  =  ( { (  _I  |`  ( Base `  K
) ) }  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
2724, 26eqtrd 2412 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .0.  )  =  ( {
(  _I  |`  ( Base `  K ) ) }  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) )
28 dib0.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
29 dib0.o . . . 4  |-  O  =  ( 0g `  U
)
3010, 14, 19, 28, 29, 20dvh0g 31277 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  =  <. (  _I  |`  ( Base `  K
) ) ,  ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) >.
)
3130sneqd 3763 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  { O }  =  { <. (  _I  |`  ( Base `  K ) ) ,  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) >. } )
326, 27, 313eqtr4a 2438 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .0.  )  =  { O } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2892   {csn 3750   <.cop 3753   class class class wbr 4146    e. cmpt 4200    _I cid 4427    X. cxp 4809    |` cres 4813   ` cfv 5387   Basecbs 13389   lecple 13456   0gc0g 13643   0.cp0 14386   OPcops 29338   HLchlt 29516   LHypclh 30149   LTrncltrn 30266   DIsoAcdia 31194   DVecHcdvh 31244   DIsoBcdib 31304
This theorem is referenced by:  dihvalcqat  31405  dih0  31446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-undef 6472  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-0g 13647  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-mnd 14610  df-grp 14732  df-minusg 14733  df-mgp 15569  df-rng 15583  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-drng 15757  df-lmod 15872  df-lvec 16095  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324  df-tendo 30920  df-edring 30922  df-disoa 31195  df-dvech 31245  df-dib 31305
  Copyright terms: Public domain W3C validator