Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibeldmN Unicode version

Theorem dibeldmN 31653
Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b  |-  B  =  ( Base `  K
)
dibfn.l  |-  .<_  =  ( le `  K )
dibfn.h  |-  H  =  ( LHyp `  K
)
dibfn.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibeldmN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  ( X  e.  B  /\  X  .<_  W ) ) )

Proof of Theorem dibeldmN
StepHypRef Expression
1 dibfn.h . . . 4  |-  H  =  ( LHyp `  K
)
2 eqid 2412 . . . 4  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
3 dibfn.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
41, 2, 3dibdiadm 31650 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  ( ( DIsoA `  K
) `  W )
)
54eleq2d 2479 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  X  e.  dom  (
( DIsoA `  K ) `  W ) ) )
6 dibfn.b . . 3  |-  B  =  ( Base `  K
)
7 dibfn.l . . 3  |-  .<_  =  ( le `  K )
86, 7, 1, 2diaeldm 31531 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  ( ( DIsoA `  K
) `  W )  <->  ( X  e.  B  /\  X  .<_  W ) ) )
95, 8bitrd 245 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  ( X  e.  B  /\  X  .<_  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4180   dom cdm 4845   ` cfv 5421   Basecbs 13432   lecple 13499   LHypclh 30478   DIsoAcdia 31523   DIsoBcdib 31633
This theorem is referenced by:  dibf11N  31656  dibintclN  31662  dihmeetlem2N  31794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-disoa 31524  df-dib 31634
  Copyright terms: Public domain W3C validator