Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st2N Structured version   Unicode version

Theorem dibelval1st2N 31886
Description: Membership in value of the partial isomorphism B for a lattice  K. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibelval1st2.b  |-  B  =  ( Base `  K
)
dibelval1st2.l  |-  .<_  =  ( le `  K )
dibelval1st2.h  |-  H  =  ( LHyp `  K
)
dibelval1st2.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibelval1st2.r  |-  R  =  ( ( trL `  K
) `  W )
dibelval1st2.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibelval1st2N  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X
) )  ->  ( R `  ( 1st `  Y ) )  .<_  X )

Proof of Theorem dibelval1st2N
StepHypRef Expression
1 dibelval1st2.b . . 3  |-  B  =  ( Base `  K
)
2 dibelval1st2.l . . 3  |-  .<_  =  ( le `  K )
3 dibelval1st2.h . . 3  |-  H  =  ( LHyp `  K
)
4 eqid 2435 . . 3  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
5 dibelval1st2.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
61, 2, 3, 4, 5dibelval1st 31884 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X
) )  ->  ( 1st `  Y )  e.  ( ( ( DIsoA `  K ) `  W
) `  X )
)
7 dibelval1st2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 dibelval1st2.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
91, 2, 3, 7, 8, 4diatrl 31779 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( 1st `  Y )  e.  ( ( ( DIsoA `  K
) `  W ) `  X ) )  -> 
( R `  ( 1st `  Y ) ) 
.<_  X )
106, 9syld3an3 1229 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X
) )  ->  ( R `  ( 1st `  Y ) )  .<_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446   1stc1st 6339   Basecbs 13461   lecple 13528   LHypclh 30718   LTrncltrn 30835   trLctrl 30892   DIsoAcdia 31763   DIsoBcdib 31873
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-1st 6341  df-disoa 31764  df-dib 31874
  Copyright terms: Public domain W3C validator