Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibglbN Structured version   Unicode version

Theorem dibglbN 32026
Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibglb.g  |-  G  =  ( glb `  K
)
dibglb.h  |-  H  =  ( LHyp `  K
)
dibglb.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibglbN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Distinct variable groups:    x, G    x, H    x, K    x, S    x, W
Allowed substitution hint:    I( x)

Proof of Theorem dibglbN
Dummy variables  f 
s  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simprl 734 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
dom  I )
3 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 eqid 2438 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
5 dibglb.h . . . . . 6  |-  H  =  ( LHyp `  K
)
6 dibglb.i . . . . . 6  |-  I  =  ( ( DIsoB `  K
) `  W )
73, 4, 5, 6dibdmN 32017 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
y  e.  ( Base `  K )  |  y ( le `  K
) W } )
87sseq2d 3378 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  C_  dom  I 
<->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
98adantr 453 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( S  C_  dom  I  <->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
102, 9mpbid 203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
11 simprr 735 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
125, 6dibvalrel 32023 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  ( G `  S ) ) )
1312adantr 453 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  ( I `  ( G `  S )
) )
14 n0 3639 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
1514biimpi 188 . . . . . . 7  |-  ( S  =/=  (/)  ->  E. x  x  e.  S )
1615ad2antll 711 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x  x  e.  S )
175, 6dibvalrel 32023 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  x ) )
1817adantr 453 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  ( I `  x
) )
1918a1d 24 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( x  e.  S  ->  Rel  ( I `  x ) ) )
2019ancld 538 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( x  e.  S  ->  ( x  e.  S  /\  Rel  ( I `  x ) ) ) )
2120eximdv 1633 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( E. x  x  e.  S  ->  E. x
( x  e.  S  /\  Rel  ( I `  x ) ) ) )
2216, 21mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x ( x  e.  S  /\  Rel  (
I `  x )
) )
23 df-rex 2713 . . . . 5  |-  ( E. x  e.  S  Rel  ( I `  x
)  <->  E. x ( x  e.  S  /\  Rel  ( I `  x
) ) )
2422, 23sylibr 205 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x  e.  S  Rel  ( I `  x
) )
25 reliin 4998 . . . 4  |-  ( E. x  e.  S  Rel  ( I `  x
)  ->  Rel  |^|_ x  e.  S  ( I `  x ) )
2624, 25syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  |^|_ x  e.  S  ( I `  x
) )
27 id 21 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) ) )
28 simpl 445 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
29 simprl 734 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
30 eqid 2438 . . . . . . . . . . . . 13  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
313, 4, 5, 30diadm 31895 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  ( ( DIsoA `  K ) `  W
)  =  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
3231adantr 453 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  dom  ( ( DIsoA `  K
) `  W )  =  { y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
3329, 32sseqtr4d 3387 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  dom  ( (
DIsoA `  K ) `  W ) )
34 simprr 735 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
35 dibglb.g . . . . . . . . . . 11  |-  G  =  ( glb `  K
)
3635, 5, 30diaglbN 31915 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  ( ( DIsoA `  K
) `  W )  /\  S  =/=  (/) ) )  ->  ( ( (
DIsoA `  K ) `  W ) `  ( G `  S )
)  =  |^|_ x  e.  S  ( (
( DIsoA `  K ) `  W ) `  x
) )
3728, 33, 34, 36syl12anc 1183 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  = 
|^|_ x  e.  S  ( ( ( DIsoA `  K ) `  W
) `  x )
)
3837eleq2d 2505 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  ( G `  S
) )  <->  f  e.  |^|_
x  e.  S  ( ( ( DIsoA `  K
) `  W ) `  x ) ) )
39 vex 2961 . . . . . . . . 9  |-  f  e. 
_V
40 eliin 4100 . . . . . . . . 9  |-  ( f  e.  _V  ->  (
f  e.  |^|_ x  e.  S  ( (
( DIsoA `  K ) `  W ) `  x
)  <->  A. x  e.  S  f  e.  ( (
( DIsoA `  K ) `  W ) `  x
) ) )
4139, 40ax-mp 8 . . . . . . . 8  |-  ( f  e.  |^|_ x  e.  S  ( ( ( DIsoA `  K ) `  W
) `  x )  <->  A. x  e.  S  f  e.  ( ( (
DIsoA `  K ) `  W ) `  x
) )
4238, 41syl6bb 254 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  ( G `  S
) )  <->  A. x  e.  S  f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )
) )
4342anbi1d 687 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) )  <->  ( A. x  e.  S  f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
44 r19.27zv 3729 . . . . . . 7  |-  ( S  =/=  (/)  ->  ( A. x  e.  S  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  x
)  /\  s  =  ( h  e.  (
( LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) )  <-> 
( A. x  e.  S  f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
4544ad2antll 711 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) )  <-> 
( A. x  e.  S  f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
4643, 45bitr4d 249 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) )  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
47 hlclat 30218 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
4847ad2antrr 708 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
49 ssrab2 3430 . . . . . . . 8  |-  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  C_  ( Base `  K )
5029, 49syl6ss 3362 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  ( Base `  K
) )
513, 35clatglbcl 14543 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  ( G `  S )  e.  ( Base `  K
) )
5248, 50, 51syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( G `  S
)  e.  ( Base `  K ) )
53 hllat 30223 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
5453ad3antrrr 712 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  Lat )
5547ad3antrrr 712 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  CLat )
56 simplrl 738 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
5756, 49syl6ss 3362 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  ( Base `  K ) )
5855, 57, 51syl2anc 644 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  e.  ( Base `  K ) )
5950sselda 3350 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  ( Base `  K ) )
603, 5lhpbase 30857 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
6160ad3antlr 713 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  W  e.  ( Base `  K ) )
62 simpr 449 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  S )
633, 4, 35clatglble 14554 . . . . . . . . 9  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  x  e.  S )  ->  ( G `  S )
( le `  K
) x )
6455, 57, 62, 63syl3anc 1185 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) x )
6529sselda 3350 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
66 breq1 4217 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y ( le `  K ) W  <->  x ( le `  K ) W ) )
6766elrab 3094 . . . . . . . . . 10  |-  ( x  e.  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  <->  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )
6865, 67sylib 190 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )
6968simprd 451 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x ( le `  K ) W )
703, 4, 54, 58, 59, 61, 64, 69lattrd 14489 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) W )
7116, 70exlimddv 1649 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( G `  S
) ( le `  K ) W )
72 eqid 2438 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
73 eqid 2438 . . . . . . 7  |-  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
743, 4, 5, 72, 73, 30, 6dibopelval2 32005 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  ( Base `  K
)  /\  ( G `  S ) ( le
`  K ) W ) )  ->  ( <. f ,  s >.  e.  ( I `  ( G `  S )
)  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
7528, 52, 71, 74syl12anc 1183 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  ( I `  ( G `  S ) )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
76 opex 4429 . . . . . . 7  |-  <. f ,  s >.  e.  _V
77 eliin 4100 . . . . . . 7  |-  ( <.
f ,  s >.  e.  _V  ->  ( <. f ,  s >.  e.  |^|_ x  e.  S  ( I `
 x )  <->  A. x  e.  S  <. f ,  s >.  e.  (
I `  x )
) )
7876, 77ax-mp 8 . . . . . 6  |-  ( <.
f ,  s >.  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  <. f ,  s >.  e.  ( I `  x
) )
79 simpll 732 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
803, 4, 5, 72, 73, 30, 6dibopelval2 32005 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  ( <. f ,  s >.  e.  ( I `  x
)  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8179, 68, 80syl2anc 644 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( <. f ,  s
>.  e.  ( I `  x )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8281ralbidva 2723 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( A. x  e.  S  <. f ,  s
>.  e.  ( I `  x )  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8378, 82syl5bb 250 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
8446, 75, 833bitr4d 278 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  ( I `  ( G `  S ) )  <->  <. f ,  s
>.  e.  |^|_ x  e.  S  ( I `  x
) ) )
8584eqrelrdv2 4977 . . 3  |-  ( ( ( Rel  ( I `
 ( G `  S ) )  /\  Rel  |^|_ x  e.  S  ( I `  x
) )  /\  (
( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) ) )  ->  ( I `  ( G `  S ) )  =  |^|_ x  e.  S  ( I `  x ) )
8613, 26, 27, 85syl21anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( I `  ( G `  S )
)  =  |^|_ x  e.  S  ( I `  x ) )
871, 10, 11, 86syl12anc 1183 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    C_ wss 3322   (/)c0 3630   <.cop 3819   |^|_ciin 4096   class class class wbr 4214    e. cmpt 4268    _I cid 4495   dom cdm 4880    |` cres 4882   Rel wrel 4885   ` cfv 5456   Basecbs 13471   lecple 13538   glbcglb 14402   Latclat 14476   CLatccla 14538   HLchlt 30210   LHypclh 30843   LTrncltrn 30960   DIsoAcdia 31888   DIsoBcdib 31998
This theorem is referenced by:  dibintclN  32027  dihglblem3N  32155  dihmeetlem2N  32159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-map 7022  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-lhyp 30847  df-laut 30848  df-ldil 30963  df-ltrn 30964  df-trl 31018  df-disoa 31889  df-dib 31999
  Copyright terms: Public domain W3C validator