Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblsmopel Unicode version

Theorem diblsmopel 31983
Description: Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
diblsmopel.b  |-  B  =  ( Base `  K
)
diblsmopel.l  |-  .<_  =  ( le `  K )
diblsmopel.h  |-  H  =  ( LHyp `  K
)
diblsmopel.t  |-  T  =  ( ( LTrn `  K
) `  W )
diblsmopel.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
diblsmopel.v  |-  V  =  ( ( DVecA `  K
) `  W )
diblsmopel.u  |-  U  =  ( ( DVecH `  K
) `  W )
diblsmopel.q  |-  .(+)  =  (
LSSum `  V )
diblsmopel.p  |-  .+b  =  ( LSSum `  U )
diblsmopel.j  |-  J  =  ( ( DIsoA `  K
) `  W )
diblsmopel.i  |-  I  =  ( ( DIsoB `  K
) `  W )
diblsmopel.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
diblsmopel.x  |-  ( ph  ->  ( X  e.  B  /\  X  .<_  W ) )
diblsmopel.y  |-  ( ph  ->  ( Y  e.  B  /\  Y  .<_  W ) )
Assertion
Ref Expression
diblsmopel  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .+b  ( I `  Y
) )  <->  ( F  e.  ( ( J `  X )  .(+)  ( J `
 Y ) )  /\  S  =  O ) ) )
Distinct variable groups:    B, f    f, H    f, K    T, f    f, W
Allowed substitution hints:    ph( f)    .+b ( f)    .(+) (
f)    S( f)    U( f)    F( f)    I( f)    J( f)   
.<_ ( f)    O( f)    V( f)    X( f)    Y( f)

Proof of Theorem diblsmopel
Dummy variables  x  w  y  z  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diblsmopel.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 diblsmopel.x . . . 4  |-  ( ph  ->  ( X  e.  B  /\  X  .<_  W ) )
3 diblsmopel.b . . . . 5  |-  B  =  ( Base `  K
)
4 diblsmopel.l . . . . 5  |-  .<_  =  ( le `  K )
5 diblsmopel.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 diblsmopel.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
7 diblsmopel.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
8 eqid 2296 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
93, 4, 5, 6, 7, 8diblss 31982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  e.  ( LSubSp `  U )
)
101, 2, 9syl2anc 642 . . 3  |-  ( ph  ->  ( I `  X
)  e.  ( LSubSp `  U ) )
11 diblsmopel.y . . . 4  |-  ( ph  ->  ( Y  e.  B  /\  Y  .<_  W ) )
123, 4, 5, 6, 7, 8diblss 31982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  (
I `  Y )  e.  ( LSubSp `  U )
)
131, 11, 12syl2anc 642 . . 3  |-  ( ph  ->  ( I `  Y
)  e.  ( LSubSp `  U ) )
14 eqid 2296 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
15 diblsmopel.p . . . 4  |-  .+b  =  ( LSSum `  U )
165, 6, 14, 8, 15dvhopellsm 31929 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  (
LSubSp `  U )  /\  ( I `  Y
)  e.  ( LSubSp `  U ) )  -> 
( <. F ,  S >.  e.  ( ( I `
 X )  .+b  ( I `  Y
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) )
171, 10, 13, 16syl3anc 1182 . 2  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .+b  ( I `  Y
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) )
18 excom 1798 . . . 4  |-  ( E. y E. z E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  E. z E. y E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) )
19 diblsmopel.t . . . . . . . . . . . . 13  |-  T  =  ( ( LTrn `  K
) `  W )
20 diblsmopel.o . . . . . . . . . . . . 13  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
21 diblsmopel.j . . . . . . . . . . . . 13  |-  J  =  ( ( DIsoA `  K
) `  W )
223, 4, 5, 19, 20, 21, 7dibopelval2 31957 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. x ,  y >.  e.  ( I `  X
)  <->  ( x  e.  ( J `  X
)  /\  y  =  O ) ) )
231, 2, 22syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( I `  X )  <->  ( x  e.  ( J `  X
)  /\  y  =  O ) ) )
243, 4, 5, 19, 20, 21, 7dibopelval2 31957 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( <. z ,  w >.  e.  ( I `  Y
)  <->  ( z  e.  ( J `  Y
)  /\  w  =  O ) ) )
251, 11, 24syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( <. z ,  w >.  e.  ( I `  Y )  <->  ( z  e.  ( J `  Y
)  /\  w  =  O ) ) )
2623, 25anbi12d 691 . . . . . . . . . 10  |-  ( ph  ->  ( ( <. x ,  y >.  e.  ( I `  X )  /\  <. z ,  w >.  e.  ( I `  Y ) )  <->  ( (
x  e.  ( J `
 X )  /\  y  =  O )  /\  ( z  e.  ( J `  Y )  /\  w  =  O ) ) ) )
27 an4 797 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( J `  X )  /\  y  =  O )  /\  ( z  e.  ( J `  Y )  /\  w  =  O ) )  <->  ( (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  ( y  =  O  /\  w  =  O ) ) )
28 ancom 437 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  ( y  =  O  /\  w  =  O ) )  <->  ( (
y  =  O  /\  w  =  O )  /\  ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) ) ) )
2927, 28bitri 240 . . . . . . . . . 10  |-  ( ( ( x  e.  ( J `  X )  /\  y  =  O )  /\  ( z  e.  ( J `  Y )  /\  w  =  O ) )  <->  ( (
y  =  O  /\  w  =  O )  /\  ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) ) ) )
3026, 29syl6bb 252 . . . . . . . . 9  |-  ( ph  ->  ( ( <. x ,  y >.  e.  ( I `  X )  /\  <. z ,  w >.  e.  ( I `  Y ) )  <->  ( (
y  =  O  /\  w  =  O )  /\  ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) ) ) ) )
3130anbi1d 685 . . . . . . . 8  |-  ( ph  ->  ( ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  ( ( ( y  =  O  /\  w  =  O )  /\  ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) ) )  /\  <. F ,  S >.  =  (
<. x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) )
32 anass 630 . . . . . . . . 9  |-  ( ( ( ( y  =  O  /\  w  =  O )  /\  (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) ) )  /\  <. F ,  S >.  =  ( <. x ,  y >. ( +g  `  U ) <.
z ,  w >. ) )  <->  ( ( y  =  O  /\  w  =  O )  /\  (
( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) )
33 df-3an 936 . . . . . . . . 9  |-  ( ( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) )  <->  ( (
y  =  O  /\  w  =  O )  /\  ( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) )
3432, 33bitr4i 243 . . . . . . . 8  |-  ( ( ( ( y  =  O  /\  w  =  O )  /\  (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) ) )  /\  <. F ,  S >.  =  ( <. x ,  y >. ( +g  `  U ) <.
z ,  w >. ) )  <->  ( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <. x ,  y
>. ( +g  `  U
) <. z ,  w >. ) ) ) )
3531, 34syl6bb 252 . . . . . . 7  |-  ( ph  ->  ( ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  ( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <. x ,  y
>. ( +g  `  U
) <. z ,  w >. ) ) ) ) )
36352exbidv 1618 . . . . . 6  |-  ( ph  ->  ( E. y E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  E. y E. w
( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  <. F ,  S >.  =  (
<. x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) ) ) )
37 fvex 5555 . . . . . . . . . . 11  |-  ( (
LTrn `  K ) `  W )  e.  _V
3819, 37eqeltri 2366 . . . . . . . . . 10  |-  T  e. 
_V
3938mptex 5762 . . . . . . . . 9  |-  ( f  e.  T  |->  (  _I  |`  B ) )  e. 
_V
4020, 39eqeltri 2366 . . . . . . . 8  |-  O  e. 
_V
41 opeq2 3813 . . . . . . . . . . 11  |-  ( y  =  O  ->  <. x ,  y >.  =  <. x ,  O >. )
4241oveq1d 5889 . . . . . . . . . 10  |-  ( y  =  O  ->  ( <. x ,  y >.
( +g  `  U )
<. z ,  w >. )  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  w >. ) )
4342eqeq2d 2307 . . . . . . . . 9  |-  ( y  =  O  ->  ( <. F ,  S >.  =  ( <. x ,  y
>. ( +g  `  U
) <. z ,  w >. )  <->  <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  w >. ) ) )
4443anbi2d 684 . . . . . . . 8  |-  ( y  =  O  ->  (
( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  <. F ,  S >.  =  (
<. x ,  O >. ( +g  `  U )
<. z ,  w >. ) ) ) )
45 opeq2 3813 . . . . . . . . . . 11  |-  ( w  =  O  ->  <. z ,  w >.  =  <. z ,  O >. )
4645oveq2d 5890 . . . . . . . . . 10  |-  ( w  =  O  ->  ( <. x ,  O >. ( +g  `  U )
<. z ,  w >. )  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  O >. ) )
4746eqeq2d 2307 . . . . . . . . 9  |-  ( w  =  O  ->  ( <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  w >. )  <->  <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  O >. ) ) )
4847anbi2d 684 . . . . . . . 8  |-  ( w  =  O  ->  (
( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  O >. ( +g  `  U )
<. z ,  w >. ) )  <->  ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  <. F ,  S >.  =  (
<. x ,  O >. ( +g  `  U )
<. z ,  O >. ) ) ) )
4940, 40, 44, 48ceqsex2v 2838 . . . . . . 7  |-  ( E. y E. w ( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) ) )  <->  ( (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  O >. ) ) )
501adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
512adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( X  e.  B  /\  X  .<_  W ) )
52 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  x  e.  ( J `  X
) )
533, 4, 5, 19, 21diael 31855 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  x  e.  ( J `  X
) )  ->  x  e.  T )
5450, 51, 52, 53syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  x  e.  T )
55 eqid 2296 . . . . . . . . . . . . 13  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
563, 5, 19, 55, 20tendo0cl 31601 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  ( (
TEndo `  K ) `  W ) )
5750, 56syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  O  e.  ( ( TEndo `  K
) `  W )
)
5811adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( Y  e.  B  /\  Y  .<_  W ) )
59 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  z  e.  ( J `  Y
) )
603, 4, 5, 19, 21diael 31855 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W )  /\  z  e.  ( J `  Y
) )  ->  z  e.  T )
6150, 58, 59, 60syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  z  e.  T )
62 eqid 2296 . . . . . . . . . . . 12  |-  (Scalar `  U )  =  (Scalar `  U )
63 eqid 2296 . . . . . . . . . . . 12  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
645, 19, 55, 6, 62, 14, 63dvhopvadd 31905 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  T  /\  O  e.  ( ( TEndo `  K
) `  W )
)  /\  ( z  e.  T  /\  O  e.  ( ( TEndo `  K
) `  W )
) )  ->  ( <. x ,  O >. ( +g  `  U )
<. z ,  O >. )  =  <. ( x  o.  z ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >. )
6550, 54, 57, 61, 57, 64syl122anc 1191 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( <. x ,  O >. ( +g  `  U )
<. z ,  O >. )  =  <. ( x  o.  z ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >. )
6665eqeq2d 2307 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  O >. )  <->  <. F ,  S >.  =  <. ( x  o.  z ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >. ) )
67 vex 2804 . . . . . . . . . . . 12  |-  x  e. 
_V
68 vex 2804 . . . . . . . . . . . 12  |-  z  e. 
_V
6967, 68coex 5232 . . . . . . . . . . 11  |-  ( x  o.  z )  e. 
_V
70 ovex 5899 . . . . . . . . . . 11  |-  ( O ( +g  `  (Scalar `  U ) ) O )  e.  _V
7169, 70opth2 4264 . . . . . . . . . 10  |-  ( <. F ,  S >.  = 
<. ( x  o.  z
) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >.  <->  ( F  =  ( x  o.  z
)  /\  S  =  ( O ( +g  `  (Scalar `  U ) ) O ) ) )
72 diblsmopel.v . . . . . . . . . . . . . . 15  |-  V  =  ( ( DVecA `  K
) `  W )
73 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( +g  `  V )  =  ( +g  `  V )
745, 19, 72, 73dvavadd 31826 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  T  /\  z  e.  T ) )  -> 
( x ( +g  `  V ) z )  =  ( x  o.  z ) )
7550, 54, 61, 74syl12anc 1180 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  (
x ( +g  `  V
) z )  =  ( x  o.  z
) )
7675eqeq2d 2307 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( F  =  ( x
( +g  `  V ) z )  <->  F  =  ( x  o.  z
) ) )
7776bicomd 192 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( F  =  ( x  o.  z )  <->  F  =  ( x ( +g  `  V ) z ) ) )
78 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
795, 19, 55, 6, 62, 78, 63dvhfplusr 31896 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) ) )
8050, 79syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( +g  `  (Scalar `  U
) )  =  ( s  e.  ( (
TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) ) )
8180oveqd 5891 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( O ( +g  `  (Scalar `  U ) ) O )  =  ( O ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) ) O ) )
823, 5, 19, 55, 20, 78tendo0pl 31602 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  O  e.  ( ( TEndo `  K ) `  W ) )  -> 
( O ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) O )  =  O )
8350, 57, 82syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( O ( s  e.  ( ( TEndo `  K
) `  W ) ,  t  e.  (
( TEndo `  K ) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  ( t `  f ) ) ) ) O )  =  O )
8481, 83eqtrd 2328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( O ( +g  `  (Scalar `  U ) ) O )  =  O )
8584eqeq2d 2307 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( S  =  ( O
( +g  `  (Scalar `  U ) ) O )  <->  S  =  O
) )
8677, 85anbi12d 691 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  (
( F  =  ( x  o.  z )  /\  S  =  ( O ( +g  `  (Scalar `  U ) ) O ) )  <->  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) ) )
8771, 86syl5bb 248 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( <. F ,  S >.  = 
<. ( x  o.  z
) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >.  <->  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) ) )
8866, 87bitrd 244 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) ) )  ->  ( <. F ,  S >.  =  ( <. x ,  O >. ( +g  `  U
) <. z ,  O >. )  <->  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) ) )
8988pm5.32da 622 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  <. F ,  S >.  =  (
<. x ,  O >. ( +g  `  U )
<. z ,  O >. ) )  <->  ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  ( F  =  ( x
( +g  `  V ) z )  /\  S  =  O ) ) ) )
9049, 89syl5bb 248 . . . . . 6  |-  ( ph  ->  ( E. y E. w ( y  =  O  /\  w  =  O  /\  ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  <. F ,  S >.  =  ( <. x ,  y
>. ( +g  `  U
) <. z ,  w >. ) ) )  <->  ( (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  (
x ( +g  `  V
) z )  /\  S  =  O )
) ) )
9136, 90bitrd 244 . . . . 5  |-  ( ph  ->  ( E. y E. w ( ( <.
x ,  y >.  e.  ( I `  X
)  /\  <. z ,  w >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  ( F  =  ( x
( +g  `  V ) z )  /\  S  =  O ) ) ) )
9291exbidv 1616 . . . 4  |-  ( ph  ->  ( E. z E. y E. w ( ( <. x ,  y
>.  e.  ( I `  X )  /\  <. z ,  w >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  E. z ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  (
x ( +g  `  V
) z )  /\  S  =  O )
) ) )
9318, 92syl5bb 248 . . 3  |-  ( ph  ->  ( E. y E. z E. w ( ( <. x ,  y
>.  e.  ( I `  X )  /\  <. z ,  w >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
x ,  y >.
( +g  `  U )
<. z ,  w >. ) )  <->  E. z ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  (
x ( +g  `  V
) z )  /\  S  =  O )
) ) )
9493exbidv 1616 . 2  |-  ( ph  ->  ( E. x E. y E. z E. w
( ( <. x ,  y >.  e.  ( I `  X )  /\  <. z ,  w >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <. x ,  y
>. ( +g  `  U
) <. z ,  w >. ) )  <->  E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  ( F  =  ( x
( +g  `  V ) z )  /\  S  =  O ) ) ) )
95 anass 630 . . . . . 6  |-  ( ( ( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x ( +g  `  V ) z ) )  /\  S  =  O )  <->  ( (
x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  (
x ( +g  `  V
) z )  /\  S  =  O )
) )
9695bicomi 193 . . . . 5  |-  ( ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) )  <->  ( (
( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x ( +g  `  V ) z ) )  /\  S  =  O ) )
97962exbii 1573 . . . 4  |-  ( E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) )  <->  E. x E. z ( ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x
( +g  `  V ) z ) )  /\  S  =  O )
)
98 19.41vv 1855 . . . 4  |-  ( E. x E. z ( ( ( x  e.  ( J `  X
)  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x ( +g  `  V ) z ) )  /\  S  =  O )  <->  ( E. x E. z ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x
( +g  `  V ) z ) )  /\  S  =  O )
)
9997, 98bitri 240 . . 3  |-  ( E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y ) )  /\  ( F  =  ( x ( +g  `  V ) z )  /\  S  =  O ) )  <->  ( E. x E. z ( ( x  e.  ( J `
 X )  /\  z  e.  ( J `  Y ) )  /\  F  =  ( x
( +g  `  V ) z ) )  /\  S  =  O )
)
1005, 72dvalvec 31838 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  V  e.  LVec )
101 lveclmod 15875 . . . . . . . . . 10  |-  ( V  e.  LVec  ->  V  e. 
LMod )
1021, 100, 1013syl 18 . . . . . . . . 9  |-  ( ph  ->  V  e.  LMod )
103 eqid 2296 . . . . . . . . . 10  |-  ( LSubSp `  V )  =  (
LSubSp `  V )
104103lsssssubg 15731 . . . . . . . . 9  |-  ( V  e.  LMod  ->  ( LSubSp `  V )  C_  (SubGrp `  V ) )
105102, 104syl 15 . . . . . . . 8  |-  ( ph  ->  ( LSubSp `  V )  C_  (SubGrp `  V )
)
1063, 4, 5, 72, 21, 103dialss 31858 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( J `  X )  e.  ( LSubSp `  V )
)
1071, 2, 106syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( J `  X
)  e.  ( LSubSp `  V ) )
108105, 107sseldd 3194 . . . . . . 7  |-  ( ph  ->  ( J `  X
)  e.  (SubGrp `  V ) )
1093, 4, 5, 72, 21, 103dialss 31858 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( J `  Y )  e.  ( LSubSp `  V )
)
1101, 11, 109syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( J `  Y
)  e.  ( LSubSp `  V ) )
111105, 110sseldd 3194 . . . . . . 7  |-  ( ph  ->  ( J `  Y
)  e.  (SubGrp `  V ) )
112 diblsmopel.q . . . . . . . 8  |-  .(+)  =  (
LSSum `  V )
11373, 112lsmelval 14976 . . . . . . 7  |-  ( ( ( J `  X
)  e.  (SubGrp `  V )  /\  ( J `  Y )  e.  (SubGrp `  V )
)  ->  ( F  e.  ( ( J `  X )  .(+)  ( J `
 Y ) )  <->  E. x  e.  ( J `  X ) E. z  e.  ( J `  Y ) F  =  ( x
( +g  `  V ) z ) ) )
114108, 111, 113syl2anc 642 . . . . . 6  |-  ( ph  ->  ( F  e.  ( ( J `  X
)  .(+)  ( J `  Y ) )  <->  E. x  e.  ( J `  X
) E. z  e.  ( J `  Y
) F  =  ( x ( +g  `  V
) z ) ) )
115 r2ex 2594 . . . . . 6  |-  ( E. x  e.  ( J `
 X ) E. z  e.  ( J `
 Y ) F  =  ( x ( +g  `  V ) z )  <->  E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  F  =  ( x ( +g  `  V ) z ) ) )
116114, 115syl6bb 252 . . . . 5  |-  ( ph  ->  ( F  e.  ( ( J `  X
)  .(+)  ( J `  Y ) )  <->  E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  F  =  ( x ( +g  `  V ) z ) ) ) )
117116anbi1d 685 . . . 4  |-  ( ph  ->  ( ( F  e.  ( ( J `  X )  .(+)  ( J `
 Y ) )  /\  S  =  O )  <->  ( E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  F  =  ( x ( +g  `  V ) z ) )  /\  S  =  O )
) )
118117bicomd 192 . . 3  |-  ( ph  ->  ( ( E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  F  =  ( x ( +g  `  V ) z ) )  /\  S  =  O )  <->  ( F  e.  ( ( J `  X ) 
.(+)  ( J `  Y ) )  /\  S  =  O )
) )
11999, 118syl5bb 248 . 2  |-  ( ph  ->  ( E. x E. z ( ( x  e.  ( J `  X )  /\  z  e.  ( J `  Y
) )  /\  ( F  =  ( x
( +g  `  V ) z )  /\  S  =  O ) )  <->  ( F  e.  ( ( J `  X )  .(+)  ( J `
 Y ) )  /\  S  =  O ) ) )
12017, 94, 1193bitrd 270 1  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .+b  ( I `  Y
) )  <->  ( F  e.  ( ( J `  X )  .(+)  ( J `
 Y ) )  /\  S  =  O ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    C_ wss 3165   <.cop 3656   class class class wbr 4039    e. cmpt 4093    _I cid 4320    |` cres 4707    o. ccom 4709   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   lecple 13231  SubGrpcsubg 14631   LSSumclsm 14961   LModclmod 15643   LSubSpclss 15705   LVecclvec 15871   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563   DVecAcdveca 31813   DIsoAcdia 31840   DVecHcdvh 31890   DIsoBcdib 31950
This theorem is referenced by:  dib2dim  32055  dih2dimbALTN  32057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-lmod 15645  df-lss 15706  df-lvec 15872  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-tendo 31566  df-edring 31568  df-dveca 31814  df-disoa 31841  df-dvech 31891  df-dib 31951
  Copyright terms: Public domain W3C validator