Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval2 Unicode version

Theorem dibopelval2 31260
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dibval2.b  |-  B  =  ( Base `  K
)
dibval2.l  |-  .<_  =  ( le `  K )
dibval2.h  |-  H  =  ( LHyp `  K
)
dibval2.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval2.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
dibval2.j  |-  J  =  ( ( DIsoA `  K
) `  W )
dibval2.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibopelval2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) ) )
Distinct variable groups:    f, K    f, W    T, f
Allowed substitution hints:    B( f)    S( f)    F( f)    H( f)    I( f)    J( f)    .<_ ( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem dibopelval2
StepHypRef Expression
1 dibval2.b . . . 4  |-  B  =  ( Base `  K
)
2 dibval2.l . . . 4  |-  .<_  =  ( le `  K )
3 dibval2.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dibval2.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 dibval2.o . . . 4  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
6 dibval2.j . . . 4  |-  J  =  ( ( DIsoA `  K
) `  W )
7 dibval2.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 31259 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( J `
 X )  X. 
{  .0.  } ) )
98eleq2d 2454 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  <. F ,  S >.  e.  ( ( J `
 X )  X. 
{  .0.  } ) ) )
10 opelxp 4848 . . 3  |-  ( <. F ,  S >.  e.  ( ( J `  X )  X.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  e.  {  .0.  } ) )
11 fvex 5682 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  e.  _V
124, 11eqeltri 2457 . . . . . . 7  |-  T  e. 
_V
1312mptex 5905 . . . . . 6  |-  ( f  e.  T  |->  (  _I  |`  B ) )  e. 
_V
145, 13eqeltri 2457 . . . . 5  |-  .0.  e.  _V
1514elsnc2 3786 . . . 4  |-  ( S  e.  {  .0.  }  <->  S  =  .0.  )
1615anbi2i 676 . . 3  |-  ( ( F  e.  ( J `
 X )  /\  S  e.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) )
1710, 16bitri 241 . 2  |-  ( <. F ,  S >.  e.  ( ( J `  X )  X.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) )
189, 17syl6bb 253 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   {csn 3757   <.cop 3760   class class class wbr 4153    e. cmpt 4207    _I cid 4434    X. cxp 4816    |` cres 4820   ` cfv 5394   Basecbs 13396   lecple 13463   LHypclh 30098   LTrncltrn 30215   DIsoAcdia 31143   DIsoBcdib 31253
This theorem is referenced by:  dibopelval3  31263  dibglbN  31281  diblsmopel  31286  dib2dim  31358  dih2dimbALTN  31360  dihord6apre  31371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-disoa 31144  df-dib 31254
  Copyright terms: Public domain W3C validator