Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval3 Unicode version

Theorem dibopelval3 31397
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dibval3.b  |-  B  =  ( Base `  K
)
dibval3.l  |-  .<_  =  ( le `  K )
dibval3.h  |-  H  =  ( LHyp `  K
)
dibval3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval3.r  |-  R  =  ( ( trL `  K
) `  W )
dibval3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
dibval3.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibopelval3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( ( F  e.  T  /\  ( R `  F )  .<_  X )  /\  S  =  .0.  ) ) )
Distinct variable groups:    g, K    g, W    T, g
Allowed substitution hints:    B( g)    R( g)    S( g)    F( g)    H( g)    I( g)    .<_ ( g)    V( g)    X( g)    .0. ( g)

Proof of Theorem dibopelval3
StepHypRef Expression
1 dibval3.b . . 3  |-  B  =  ( Base `  K
)
2 dibval3.l . . 3  |-  .<_  =  ( le `  K )
3 dibval3.h . . 3  |-  H  =  ( LHyp `  K
)
4 dibval3.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
5 dibval3.o . . 3  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
6 eqid 2366 . . 3  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dibval3.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibopelval2 31394 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( F  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  S  =  .0.  ) ) )
9 dibval3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
101, 2, 3, 4, 9, 6diaelval 31282 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( F  e.  ( (
( DIsoA `  K ) `  W ) `  X
)  <->  ( F  e.  T  /\  ( R `
 F )  .<_  X ) ) )
1110anbi1d 685 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( F  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  S  =  .0.  )  <->  ( ( F  e.  T  /\  ( R `  F ) 
.<_  X )  /\  S  =  .0.  ) ) )
128, 11bitrd 244 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( ( F  e.  T  /\  ( R `  F )  .<_  X )  /\  S  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   <.cop 3732   class class class wbr 4125    e. cmpt 4179    _I cid 4407    |` cres 4794   ` cfv 5358   Basecbs 13356   lecple 13423   LHypclh 30232   LTrncltrn 30349   trLctrl 30406   DIsoAcdia 31277   DIsoBcdib 31387
This theorem is referenced by:  dihord2cN  31470  dihord11b  31471  dihopelvalbN  31487  dihopelvalcpre  31497  dihjatcclem4  31670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-disoa 31278  df-dib 31388
  Copyright terms: Public domain W3C validator