Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibord Unicode version

Theorem dibord 31274
Description: The isomorphism B for a lattice  K is order-preserving in the region under co-atom  W. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib11.b  |-  B  =  ( Base `  K
)
dib11.l  |-  .<_  =  ( le `  K )
dib11.h  |-  H  =  ( LHyp `  K
)
dib11.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibord  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )

Proof of Theorem dibord
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dib11.b . . . . 5  |-  B  =  ( Base `  K
)
2 dib11.l . . . . 5  |-  .<_  =  ( le `  K )
3 dib11.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 eqid 2387 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
5 eqid 2387 . . . . 5  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )
6 eqid 2387 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dib11.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 31259 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
983adant3 977 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  X
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  X )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } ) )
101, 2, 3, 4, 5, 6, 7dibval2 31259 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  (
I `  Y )  =  ( ( ( ( DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
11103adant2 976 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  Y
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  Y )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } ) )
129, 11sseq12d 3320 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( ( ( (
DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) ) )
131, 2, 3, 7dibn0 31268 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =/=  (/) )
14133adant3 977 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  X
)  =/=  (/) )
159, 14eqnetrrd 2570 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( (
DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/) )
16 ssxpb 5243 . . 3  |-  ( ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/)  ->  ( ( ( ( ( DIsoA `  K
) `  W ) `  X )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( ( ( (
DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  <->  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  /\  { (
f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) } ) ) )
1715, 16syl 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( (
( ( DIsoA `  K
) `  W ) `  Y )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  <->  ( (
( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  /\  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) }  C_  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) ) )
18 ssid 3310 . . . 4  |-  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) }
1918biantru 492 . . 3  |-  ( ( ( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  <->  ( (
( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  /\  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) }  C_  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
201, 2, 3, 6diaord 31162 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( (
DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  <->  X  .<_  Y ) )
2119, 20syl5bbr 251 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( ( ( DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  /\  { (
f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) } )  <->  X  .<_  Y ) )
2212, 17, 213bitrd 271 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   (/)c0 3571   {csn 3757   class class class wbr 4153    e. cmpt 4207    _I cid 4434    X. cxp 4816    |` cres 4820   ` cfv 5394   Basecbs 13396   lecple 13463   HLchlt 29465   LHypclh 30098   LTrncltrn 30215   DIsoAcdia 31143   DIsoBcdib 31253
This theorem is referenced by:  dib11N  31275  cdlemn2a  31311  dihord1  31333  dihord3  31372  dihord5b  31374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273  df-disoa 31144  df-dib 31254
  Copyright terms: Public domain W3C validator