Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval3N Unicode version

Theorem dibval3N 31958
Description: Value of the partial isomorphism B for a lattice  K. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval3.b  |-  B  =  ( Base `  K
)
dibval3.l  |-  .<_  =  ( le `  K )
dibval3.h  |-  H  =  ( LHyp `  K
)
dibval3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval3.r  |-  R  =  ( ( trL `  K
) `  W )
dibval3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
dibval3.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibval3N  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( { f  e.  T  |  ( R `  f ) 
.<_  X }  X.  {  .0.  } ) )
Distinct variable groups:    f, K    g, K    T, f    f, W   
g, W    f, X
Allowed substitution hints:    B( f, g)    R( f, g)    T( g)    H( f, g)    I( f, g)    .<_ ( f, g)    V( f, g)    X( g)    .0. ( f, g)

Proof of Theorem dibval3N
StepHypRef Expression
1 dibval3.b . . 3  |-  B  =  ( Base `  K
)
2 dibval3.l . . 3  |-  .<_  =  ( le `  K )
3 dibval3.h . . 3  |-  H  =  ( LHyp `  K
)
4 dibval3.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
5 dibval3.o . . 3  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
6 eqid 2296 . . 3  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dibval3.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 31956 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  {  .0.  } ) )
9 dibval3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
101, 2, 3, 4, 9, 6diaval 31844 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( DIsoA `  K
) `  W ) `  X )  =  {
f  e.  T  | 
( R `  f
)  .<_  X } )
1110xpeq1d 4728 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( ( DIsoA `  K ) `  W
) `  X )  X.  {  .0.  } )  =  ( { f  e.  T  |  ( R `  f ) 
.<_  X }  X.  {  .0.  } ) )
128, 11eqtrd 2328 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( { f  e.  T  |  ( R `  f ) 
.<_  X }  X.  {  .0.  } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560   {csn 3653   class class class wbr 4039    e. cmpt 4093    _I cid 4320    X. cxp 4703    |` cres 4707   ` cfv 5271   Basecbs 13164   lecple 13231   LHypclh 30795   LTrncltrn 30912   trLctrl 30969   DIsoAcdia 31840   DIsoBcdib 31950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-disoa 31841  df-dib 31951
  Copyright terms: Public domain W3C validator