Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval2N Unicode version

Theorem dicelval2N 31297
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicval2.g  |-  G  =  ( iota_ g  e.  T
( g `  P
)  =  Q )
Assertion
Ref Expression
dicelval2N  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Distinct variable groups:    g, K    T, g    g, W    Q, g
Allowed substitution hints:    A( g)    P( g)    E( g)    G( g)    H( g)    I( g)    .<_ ( g)    V( g)    Y( g)

Proof of Theorem dicelval2N
StepHypRef Expression
1 dicval.l . . 3  |-  .<_  =  ( le `  K )
2 dicval.a . . 3  |-  A  =  ( Atoms `  K )
3 dicval.h . . 3  |-  H  =  ( LHyp `  K
)
4 dicval.p . . 3  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicelvalN 31293 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) ) )
9 dicval2.g . . . . . 6  |-  G  =  ( iota_ g  e.  T
( g `  P
)  =  Q )
109fveq2i 5671 . . . . 5  |-  ( ( 2nd `  Y ) `
 G )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T ( g `  P )  =  Q ) )
1110eqeq2i 2397 . . . 4  |-  ( ( 1st `  Y )  =  ( ( 2nd `  Y ) `  G
)  <->  ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) ) )
1211anbi1i 677 . . 3  |-  ( ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E )  <->  ( ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) )
1312anbi2i 676 . 2  |-  ( ( Y  e.  ( _V 
X.  _V )  /\  (
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) )
148, 13syl6bbr 255 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   class class class wbr 4153    X. cxp 4816   ` cfv 5394   1stc1st 6286   2ndc2nd 6287   iota_crio 6478   lecple 13463   occoc 13464   Atomscatm 29378   LHypclh 30098   LTrncltrn 30215   TEndoctendo 30866   DIsoCcdic 31287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-1st 6288  df-2nd 6289  df-riota 6485  df-dic 31288
  Copyright terms: Public domain W3C validator