Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval2N Unicode version

Theorem dicelval2N 31994
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicval2.g  |-  G  =  ( iota_ g  e.  T
( g `  P
)  =  Q )
Assertion
Ref Expression
dicelval2N  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Distinct variable groups:    g, K    T, g    g, W    Q, g
Allowed substitution hints:    A( g)    P( g)    E( g)    G( g)    H( g)    I( g)    .<_ ( g)    V( g)    Y( g)

Proof of Theorem dicelval2N
StepHypRef Expression
1 dicval.l . . 3  |-  .<_  =  ( le `  K )
2 dicval.a . . 3  |-  A  =  ( Atoms `  K )
3 dicval.h . . 3  |-  H  =  ( LHyp `  K
)
4 dicval.p . . 3  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicelvalN 31990 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) ) )
9 dicval2.g . . . . . 6  |-  G  =  ( iota_ g  e.  T
( g `  P
)  =  Q )
109fveq2i 5544 . . . . 5  |-  ( ( 2nd `  Y ) `
 G )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T ( g `  P )  =  Q ) )
1110eqeq2i 2306 . . . 4  |-  ( ( 1st `  Y )  =  ( ( 2nd `  Y ) `  G
)  <->  ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) ) )
1211anbi1i 676 . . 3  |-  ( ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E )  <->  ( ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) )
1312anbi2i 675 . 2  |-  ( ( Y  e.  ( _V 
X.  _V )  /\  (
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) )
148, 13syl6bbr 254 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 G )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   class class class wbr 4039    X. cxp 4703   ` cfv 5271   1stc1st 6136   2ndc2nd 6137   iota_crio 6313   lecple 13231   occoc 13232   Atomscatm 30075   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563   DIsoCcdic 31984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6138  df-2nd 6139  df-riota 6320  df-dic 31985
  Copyright terms: Public domain W3C validator