Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Unicode version

Theorem dicvaddcl 32002
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l  |-  .<_  =  ( le `  K )
dicvaddcl.a  |-  A  =  ( Atoms `  K )
dicvaddcl.h  |-  H  =  ( LHyp `  K
)
dicvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dicvaddcl.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicvaddcl.p  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dicvaddcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  e.  ( I `
 Q ) )

Proof of Theorem dicvaddcl
Dummy variables  g  h  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 dicvaddcl.l . . . . . . 7  |-  .<_  =  ( le `  K )
3 dicvaddcl.a . . . . . . 7  |-  A  =  ( Atoms `  K )
4 dicvaddcl.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
5 dicvaddcl.i . . . . . . 7  |-  I  =  ( ( DIsoC `  K
) `  W )
6 dicvaddcl.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
7 eqid 2296 . . . . . . 7  |-  ( Base `  U )  =  (
Base `  U )
82, 3, 4, 5, 6, 7dicssdvh 31998 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( Base `  U ) )
9 eqid 2296 . . . . . . . . 9  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2296 . . . . . . . . 9  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
114, 9, 10, 6, 7dvhvbase 31899 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
1211eqcomd 2301 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  =  ( Base `  U
) )
1312adantr 451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  =  ( Base `  U
) )
148, 13sseqtr4d 3228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
15143adant3 975 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( I `  Q
)  C_  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
16 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  X  e.  ( I `  Q ) )
1715, 16sseldd 3194 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  X  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
18 simp3r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  Y  e.  ( I `  Q ) )
1915, 18sseldd 3194 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  Y  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
20 eqid 2296 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
21 dicvaddcl.p . . . 4  |-  .+  =  ( +g  `  U )
22 eqid 2296 . . . 4  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
234, 9, 10, 6, 20, 21, 22dvhvadd 31904 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  /\  Y  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) ) )  ->  ( X  .+  Y )  =  <. ( ( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >. )
241, 17, 19, 23syl12anc 1180 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  =  <. (
( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >. )
252, 3, 4, 10, 5dicelval2nd 32001 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  X  e.  ( I `  Q
) )  ->  ( 2nd `  X )  e.  ( ( TEndo `  K
) `  W )
)
26253adant3r 1179 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W ) )
272, 3, 4, 10, 5dicelval2nd 32001 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
)
28273adant3l 1178 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 2nd `  Y
)  e.  ( (
TEndo `  K ) `  W ) )
29 eqid 2296 . . . . . . . 8  |-  ( oc
`  K )  =  ( oc `  K
)
302, 29, 3, 4lhpocnel 30829 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
31303ad2ant1 976 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
32 simp2 956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
33 eqid 2296 . . . . . . 7  |-  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  =  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )
342, 3, 4, 9, 33ltrniotacl 31390 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( oc `  K ) `
 W )  e.  A  /\  -.  (
( oc `  K
) `  W )  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  e.  ( (
LTrn `  K ) `  W ) )
351, 31, 32, 34syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )
36 eqid 2296 . . . . . 6  |-  ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) )
379, 36tendospdi2 31834 . . . . 5  |-  ( ( ( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )  /\  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )  ->  (
( ( 2nd `  X
) ( s  e.  ( ( TEndo `  K
) `  W ) ,  t  e.  (
( TEndo `  K ) `  W )  |->  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  ( ( s `
 h )  o.  ( t `  h
) ) ) ) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( ( ( 2nd `  X ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  o.  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
3826, 28, 35, 37syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  =  ( ( ( 2nd `  X
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) )  o.  ( ( 2nd `  Y ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
394, 9, 10, 6, 20, 36, 22dvhfplusr 31896 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) )
40393ad2ant1 976 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) )
4140oveqd 5891 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  =  ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) )
4241fveq1d 5543 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) ) )
43 eqid 2296 . . . . . . 7  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
442, 3, 4, 43, 9, 5dicelval1sta 31999 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  X  e.  ( I `  Q
) )  ->  ( 1st `  X )  =  ( ( 2nd `  X
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
45443adant3r 1179 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 1st `  X
)  =  ( ( 2nd `  X ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
462, 3, 4, 43, 9, 5dicelval1sta 31999 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
47463adant3l 1178 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
4845, 47coeq12d 4864 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 1st `  X
)  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  o.  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
4938, 42, 483eqtr4rd 2339 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 1st `  X
)  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) ) )
504, 9, 10, 36tendoplcl 31592 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
)  ->  ( ( 2nd `  X ) ( s  e.  ( (
TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) )
511, 26, 28, 50syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( s  e.  ( ( TEndo `  K
) `  W ) ,  t  e.  (
( TEndo `  K ) `  W )  |->  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  ( ( s `
 h )  o.  ( t `  h
) ) ) ) ( 2nd `  Y
) )  e.  ( ( TEndo `  K ) `  W ) )
5241, 51eqeltrd 2370 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) )
53 fvex 5555 . . . . . 6  |-  ( 1st `  X )  e.  _V
54 fvex 5555 . . . . . 6  |-  ( 1st `  Y )  e.  _V
5553, 54coex 5232 . . . . 5  |-  ( ( 1st `  X )  o.  ( 1st `  Y
) )  e.  _V
56 ovex 5899 . . . . 5  |-  ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  _V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 31989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. ( ( 1st `  X )  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) >.  e.  ( I `  Q )  <-> 
( ( ( 1st `  X )  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  /\  (
( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) ) ) )
58573adant3 975 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( <. ( ( 1st `  X )  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) >.  e.  ( I `  Q )  <-> 
( ( ( 1st `  X )  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  /\  (
( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) ) ) )
5949, 52, 58mpbir2and 888 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  <. ( ( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >.  e.  (
I `  Q )
)
6024, 59eqeltrd 2370 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  e.  ( I `
 Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   <.cop 3656   class class class wbr 4039    e. cmpt 4093    X. cxp 4703    o. ccom 4709   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   iota_crio 6313   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   lecple 13231   occoc 13232   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563   DVecHcdvh 31890   DIsoCcdic 31984
This theorem is referenced by:  diclss  32005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tendo 31566  df-edring 31568  df-dvech 31891  df-dic 31985
  Copyright terms: Public domain W3C validator