Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Unicode version

Theorem dicvscacl 31450
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l  |-  .<_  =  ( le `  K )
dicvscacl.a  |-  A  =  ( Atoms `  K )
dicvscacl.h  |-  H  =  ( LHyp `  K
)
dicvscacl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicvscacl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dicvscacl.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicvscacl.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dicvscacl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  .x.  Y )  e.  ( I `  Q ) )

Proof of Theorem dicvscacl
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  X  e.  E
)
3 dicvscacl.l . . . . . . . 8  |-  .<_  =  ( le `  K )
4 dicvscacl.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
5 dicvscacl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
6 dicvscacl.i . . . . . . . 8  |-  I  =  ( ( DIsoC `  K
) `  W )
7 dicvscacl.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
8 eqid 2358 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
93, 4, 5, 6, 7, 8dicssdvh 31445 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( Base `  U ) )
10 eqid 2358 . . . . . . . . . 10  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
11 dicvscacl.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
125, 10, 11, 7, 8dvhvbase 31346 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  E ) )
1312eqcomd 2363 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( LTrn `  K ) `  W
)  X.  E )  =  ( Base `  U
) )
1413adantr 451 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( ( LTrn `  K ) `  W
)  X.  E )  =  ( Base `  U
) )
159, 14sseqtr4d 3291 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( (
( LTrn `  K ) `  W )  X.  E
) )
16153adant3 975 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( I `  Q )  C_  (
( ( LTrn `  K
) `  W )  X.  E ) )
17 simp3r 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  Y  e.  ( I `  Q ) )
1816, 17sseldd 3257 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  Y  e.  ( ( ( LTrn `  K
) `  W )  X.  E ) )
19 dicvscacl.s . . . . 5  |-  .x.  =  ( .s `  U )
205, 10, 11, 7, 19dvhvsca 31360 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  E  /\  Y  e.  ( ( ( LTrn `  K ) `  W
)  X.  E ) ) )  ->  ( X  .x.  Y )  = 
<. ( X `  ( 1st `  Y ) ) ,  ( X  o.  ( 2nd `  Y ) ) >. )
211, 2, 18, 20syl12anc 1180 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  .x.  Y )  =  <. ( X `  ( 1st `  Y ) ) ,  ( X  o.  ( 2nd `  Y ) )
>. )
22 fvi 5662 . . . . . 6  |-  ( X  e.  E  ->  (  _I  `  X )  =  X )
232, 22syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  (  _I  `  X )  =  X )
2423coeq1d 4927 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( (  _I 
`  X )  o.  ( 2nd `  Y
) )  =  ( X  o.  ( 2nd `  Y ) ) )
2524opeq2d 3884 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  <. ( X `  ( 1st `  Y ) ) ,  ( (  _I  `  X )  o.  ( 2nd `  Y
) ) >.  =  <. ( X `  ( 1st `  Y ) ) ,  ( X  o.  ( 2nd `  Y ) )
>. )
2621, 25eqtr4d 2393 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  .x.  Y )  =  <. ( X `  ( 1st `  Y ) ) ,  ( (  _I  `  X )  o.  ( 2nd `  Y ) )
>. )
27 eqid 2358 . . . . . . . 8  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
283, 4, 5, 27, 10, 6dicelval1sta 31446 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
29283adant3l 1178 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
3029fveq2d 5612 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X `  ( 1st `  Y ) )  =  ( X `
 ( ( 2nd `  Y ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) ) ) )
313, 4, 5, 11, 6dicelval2nd 31448 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 2nd `  Y )  e.  E )
32313adant3l 1178 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( 2nd `  Y
)  e.  E )
335, 10, 11tendof 31021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  Y
)  e.  E )  ->  ( 2nd `  Y
) : ( (
LTrn `  K ) `  W ) --> ( (
LTrn `  K ) `  W ) )
341, 32, 33syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( 2nd `  Y
) : ( (
LTrn `  K ) `  W ) --> ( (
LTrn `  K ) `  W ) )
35 eqid 2358 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
363, 35, 4, 5lhpocnel 30276 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
37363ad2ant1 976 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( ( ( oc `  K ) `
 W )  e.  A  /\  -.  (
( oc `  K
) `  W )  .<_  W ) )
38 simp2 956 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
39 eqid 2358 . . . . . . . 8  |-  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  =  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )
403, 4, 5, 10, 39ltrniotacl 30837 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( oc `  K ) `
 W )  e.  A  /\  -.  (
( oc `  K
) `  W )  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  e.  ( (
LTrn `  K ) `  W ) )
411, 37, 38, 40syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )
42 fvco3 5679 . . . . . 6  |-  ( ( ( 2nd `  Y
) : ( (
LTrn `  K ) `  W ) --> ( (
LTrn `  K ) `  W )  /\  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q )  e.  ( ( LTrn `  K
) `  W )
)  ->  ( ( X  o.  ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) )  =  ( X `
 ( ( 2nd `  Y ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) ) ) )
4334, 41, 42syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( ( X  o.  ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( X `  (
( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
4430, 43eqtr4d 2393 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X `  ( 1st `  Y ) )  =  ( ( X  o.  ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
4524fveq1d 5610 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( ( (  _I  `  X )  o.  ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( ( X  o.  ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) ) )
4644, 45eqtr4d 2393 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X `  ( 1st `  Y ) )  =  ( ( (  _I  `  X
)  o.  ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
475, 11tendococl 31030 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  E  /\  ( 2nd `  Y
)  e.  E )  ->  ( X  o.  ( 2nd `  Y ) )  e.  E )
481, 2, 32, 47syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  o.  ( 2nd `  Y ) )  e.  E )
4924, 48eqeltrd 2432 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( (  _I 
`  X )  o.  ( 2nd `  Y
) )  e.  E
)
50 fvex 5622 . . . . 5  |-  ( X `
 ( 1st `  Y
) )  e.  _V
51 fvex 5622 . . . . . 6  |-  (  _I 
`  X )  e. 
_V
52 fvex 5622 . . . . . 6  |-  ( 2nd `  Y )  e.  _V
5351, 52coex 5298 . . . . 5  |-  ( (  _I  `  X )  o.  ( 2nd `  Y
) )  e.  _V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 31436 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. ( X `  ( 1st `  Y ) ) ,  ( (  _I  `  X )  o.  ( 2nd `  Y
) ) >.  e.  ( I `  Q )  <-> 
( ( X `  ( 1st `  Y ) )  =  ( ( (  _I  `  X
)  o.  ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) )  /\  ( (  _I  `  X )  o.  ( 2nd `  Y
) )  e.  E
) ) )
55543adant3 975 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( <. ( X `  ( 1st `  Y ) ) ,  ( (  _I  `  X )  o.  ( 2nd `  Y ) )
>.  e.  ( I `  Q )  <->  ( ( X `  ( 1st `  Y ) )  =  ( ( (  _I 
`  X )  o.  ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  /\  ( (  _I  `  X )  o.  ( 2nd `  Y ) )  e.  E ) ) )
5646, 49, 55mpbir2and 888 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  <. ( X `  ( 1st `  Y ) ) ,  ( (  _I  `  X )  o.  ( 2nd `  Y
) ) >.  e.  ( I `  Q ) )
5726, 56eqeltrd 2432 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  .x.  Y )  e.  ( I `  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    C_ wss 3228   <.cop 3719   class class class wbr 4104    _I cid 4386    X. cxp 4769    o. ccom 4775   -->wf 5333   ` cfv 5337  (class class class)co 5945   1stc1st 6207   2ndc2nd 6208   iota_crio 6384   Basecbs 13245   .scvsca 13309   lecple 13312   occoc 13313   Atomscatm 29522   HLchlt 29609   LHypclh 30242   LTrncltrn 30359   TEndoctendo 31010   DVecHcdvh 31337   DIsoCcdic 31431
This theorem is referenced by:  diclss  31452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-plusg 13318  df-sca 13321  df-vsca 13322  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417  df-tendo 31013  df-dvech 31338  df-dic 31432
  Copyright terms: Public domain W3C validator