MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif32 Unicode version

Theorem dif32 3444
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
dif32  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)

Proof of Theorem dif32
StepHypRef Expression
1 uncom 3332 . . 3  |-  ( B  u.  C )  =  ( C  u.  B
)
21difeq2i 3304 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( A  \  ( C  u.  B )
)
3 difun1 3441 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)
4 difun1 3441 . 2  |-  ( A 
\  ( C  u.  B ) )  =  ( ( A  \  C )  \  B
)
52, 3, 43eqtr3i 2324 1  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1632    \ cdif 3162    u. cun 3163
This theorem is referenced by:  difdifdir  3554  difsnen  6960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172
  Copyright terms: Public domain W3C validator